

AGRICULTURAL PRODUCTIVITY IN ASIA MEASURES AND PERSPECTIVES 2019

The Asian Productivity Organization (APO) is an intergovernmental organization committed to improving productivity in the Asia-Pacific region. Established in 1961, the APO contributes to the sustainable socioeconomic development of the region through policy advisory services, acting as a think tank, and undertaking smart initiatives in the industry, agriculture, service, and public sectors. The APO is shaping the future of the region by assisting member economies in formulating national strategies for enhanced productivity and through a range of institutional capacity building efforts, including research and centers of excellence in member countries.

APO members

Bangladesh, Cambodia, Republic of China, Fiji, Hong Kong, India, Indonesia, Islamic Republic of Iran, Japan, Republic of Korea, Lao PDR, Malaysia, Mongolia, Nepal, Pakistan, Philippines, Singapore, Sri Lanka, Thailand, and Vietnam.

AGRICULTURAL PRODUCTIVITY IN ASIA

MEASURES AND PERSPECTIVES 2019

DECEMBER 2019 ASIAN PRODUCTIVITY ORGANIZATION

Agricultural Productivity in Asia: Measures and Perspectives 2019

Written by C.J. O'Donnell and A. Peyrache.

First edition published in Japan by the Asian Productivity Organization 1-24-1 Hongo, Bunkyo-ku Tokyo 113-0033, Japan www.apo-tokyo.org

© 2019 Asian Productivity Organization

The views expressed in this publication do not necessarily reflect the official views of the Asian Productivity Organization (APO) or any APO member.

All rights reserved. None of the contents of this publication may be used, reproduced, stored, or transferred in any form or by any means for commercial purposes without prior written permission from the APO.

ISBN: 978-92-833-2488-1 (paperback) ISBN: 978-92-833-2489-8 (PDF format)

Designed by B&M Nxt

CONTENTS

FOR	REWORD	V
ACH	KNOWLEDGEMENTS	VII
EXE	ECUTIVE SUMMARY	IX
1.	INTRODUCTION	1
1.1	Trends in the Performance of the Agriculture Sector	1
1.2	Current Status of Agricultural Productivity Measurement	1
1.3	Current Explanations for Agricultural Productivity Change	3
2.	PRODUCTIVITY CONCEPTS AND ANALYTICAL METHODS	5
2.1	Production Technologies	5
	Common Assumptions	5
	Output Sets	6
	Output Distance Functions	6
2.2	Managerial Behavior	7
	Output Maximization	7
	TFP Maximization	7
2.3	Measures of Efficiency	8
	Output-oriented Technical Efficiency	8
	Technical, Scale and Mix Efficiency	8
2.4	Index Numbers	8
	Output Indices	9
	Input Indices	9
	TFP Indices	9
2.5	Data Envelopment Analysis	9
	Estimating OTE	10
	Estimating TSME	11
	Decomposing TFP Change	11
2.6	Stochastic Frontier Analysis	12
	Output-oriented Models	12
	Maximum Likelihood Estimation	13
	Decomposing TFP Change	13
3.	DATA AND ESTIMATION	15
3.1	Data	15
	Countries	15
	Variables	15
	Data Cleaning	18
3.2	Estimation	18
	DEA	19
	SFA	20
	TFP	20

4.	PRODUCTIVITY CHANGE BY REGION	24
4.1	Africa	24
4.2	The Americas	24
4.3	Asia	29
4.4	Europe	32
5.	PRODUCTIVITY CHANGE BY COUNTRY	35
5.1	Australia	35
5.2	Bangladesh	38
5.3	Cambodia	41
5.4	PR China	44
5.5	Republic of China	47
5.6	France	50
5.7	Germany	53
5.8	India	56
5.9	Indonesia	59
5.10	IR Iran	62
5.11	Japan	65
5.12	Republic of Korea	68
5.13	Lao PDR	71
5.14	Malaysia	74
5.15	Mongolia	77
5.16	Nepal	80
5.17	Pakistan	83
	Philippines	86
	Sri Lanka	89
	Thailand	92
5.21		95
	USA	98
	Vietnam	101
5.24	Summary	104
6.	MONITORING AGRICULTURAL PRODUCTIVITY CHANGE IN ASIA	107
6.1	Issues and Challenges	107
6.2	Recommendations	108
REF	ERENCES	109
LIST	OF ACRONYMS	110
LIST	OF TABLES	111
LIST	OF FIGURES	112

FOREWORD

In Asian countries, agriculture employs approximately one-third of the labor force and contributes approximately 9% of total value added. However, the agriculture sector faces multiple, increasingly harsh challenges. The sector will need to double food, fiber, and fuel production in order to meet additional demands from a world population of more than nine billion in 2050. This output must come from the finite land and water available for agriculture. Degradation of natural resources and negative impacts of climate change make this task even more daunting. Increasing agricultural productivity through sustainable practices has therefore become an urgent imperative.

Increased agricultural productivity is also crucial in achieving national objectives of food security, rural poverty reduction, and inclusive economic growth. For many developing countries, agriculture contributes substantially to rural livelihoods, trade revenues, and food security. It is also the backbone of the food industry sector because it supplies the raw material requirements. Unfortunately, systems for monitoring productivity trends in many developing countries are inadequate. This translates into weak planning and programming systems, which often lead to inefficient allocation of scarce resources among sectors and even within the agriculture sector.

With expanding international trade in agrifood products, countries in the region need reliable databases on agricultural resources and their productivity so that governments can plan and pursue the appropriate policy mix and program support. This is essential for enhancing the competitiveness of agri-based enterprises and to help the private sector identify potential areas for investment in agriculture.

To produce a comprehensive report on agricultural performance and productivity trends in member economies, the APO commissioned a research team from the University of Queensland, Australia, under the leadership of Professor Christopher J. O'Donnell. This research addresses the current gaps and weaknesses in systems for monitoring agricultural productivity in member countries. It also paves the way for the establishment of a harmonized APO regional database on agricultural productivity indicators for benchmarking and monitoring trends which can be utilized in designing appropriate programs to support the needs of the sector in member countries. The APO hopes that this publication will serve as an informative guide for government policymakers and national productivity organizations in identifying priorities among development goals and planning projects to address their specific needs.

Dr. AKP Mochtan Secretary-General

ACKNOWLEDGEMENTS

We thank Rhys Downham for providing research assistance. We also thank the International Labour Organization (ILO) and the Food and Agriculture Organization (FAO) of the United Nations for making data available through their ILOSTAT and FAOSTAT services.

C.J. O'Donnell and A. Peyrache Brisbane, December 2019

VIII | AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

EXECUTIVE SUMMARY

This report is divided into six sections. Section 1 summarizes trends in employment and value added in world agriculture. Among other things, it reveals that the agriculture sector still employs approximately 30% of the world's labor force, and still accounts for approximately 4% of the world's GDP. This first section of the report also summarizes the current status of agricultural productivity measurement and analysis. The focus of the report is on changes in total factor productivity (TFP).

Section 2 provides a brief overview of the main concepts and methods used in this report to analyze TFP change. Proper measures of TFP change (i.e., ones that are consistent with measurement theory) can be decomposed into measures of environmental change, technical change, and efficiency change. Estimating these components involves estimating the position and shape of production frontiers. Common methods for estimating production frontiers include data envelopment analysis (DEA) and stochastic frontier analysis (SFA). DEA methods are underpinned by the assumption that all variables involved in the production process are observed and measured without error. This assumption is rarely, if ever, true. SFA methods do not require this assumption. Partly for this reason, SFA methods have been used to obtain the main results in this report.

Section 3 summarizes the data sources, data cleaning procedures, and basic estimation results. Most of the raw data were sourced from the Food and Agriculture Organization (FAO) Corporate Statistical Database (FAOSTAT) of the UN. The project team assembled annual data on four inputs (land, labor, fertilizers, and tractors) and three outputs (crops, livestock, and greenhouse gas emissions) for 91 countries for the 55 years from 1961 to 2015. The data were used to estimate a Cobb-Douglas stochastic production frontier. The estimated coefficients are all consistent with prior expectations. The average rate of technical progress is estimated to be 0.56% per annum. The estimated production frontier is found to exhibit slightly decreasing returns to scale. It is estimated that farmers in dry (respectively wet) tropical/subtropical climate zones operate in the least (respectively most) favorable production environments.

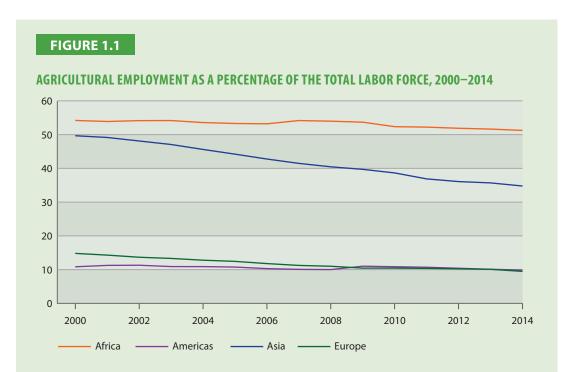
Section 4 reports estimates of average productivity and efficiency change in Africa, the Americas, Asia, and Europe. The focus is on measures of land, labor, capital, and TFP change. Among other things, it is estimated that average labor (respectively total factor) productivity in Asia was 2.507 (respectively 1.992) times higher in 2015 than it had been in 1961. On the other hand, it is estimated that average capital productivity in Asia was 30.8% lower in 2015 than it had been in 1961. These results can be largely attributed to significant increases in capital.

Section 5 reports estimates of average productivity and efficiency change in a total of 23 countries, namely, Australia, China, France, Germany, the UK, the USA, and 17 APO member countries. Again, the focus is on changes in land, labor, capital, and TFP. Among other things, it is estimated that average labor productivity (respectively total factor productivity) in India, for example, was 1.931 (respectively 1.458) times higher in 2015 than it had been in 1961. On the other hand, it is estimated that average capital productivity in India was 97.3% lower in 2015 than it had been in 1961. It is estimated that, over the period 1961 to 2015, technical progress in world agriculture contributed to a 35.2% increase in Indian TFP, and lower technical efficiency in Indian agriculture contributed to an offsetting 7.8% fall in TFP.

Section 6 discusses some of the issues and challenges involved in monitoring agricultural productivity change in Asia. The main challenge is the collection of accurate data. The project team recommends that the APO works with appropriate statistical agencies in APO member countries to conduct a comprehensive farm-level survey across all countries on a regular basis.

CHAPTER 1

This section summarizes trends in employment and value added in world agriculture. It also summarizes the current status of agricultural productivity measurement and analysis.


1.1 Trends in the Performance of the Agriculture Sector

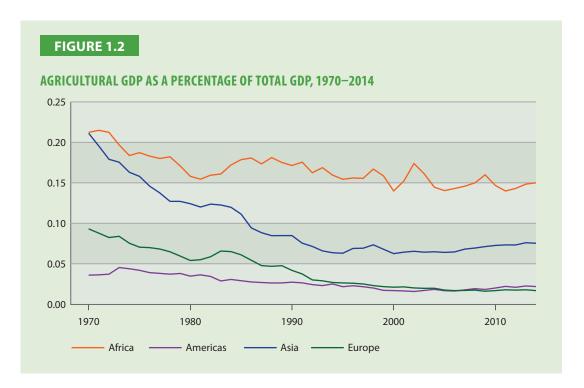
The International Labour Organization (ILO) estimates that in 2000 the agriculture sector employed 39.6% of the world's labor force; by 2014, this percentage had fallen to 29.8%. Figure 1.1 reports a breakdown of this change by year and by region. This figure indicates that the agriculture sectors in Africa and Asia have always employed a much larger percentage of the labor force than the agriculture sectors in the Americas and Europe: in 2000 (respectively 2014), the agriculture sector in Africa employed 54.2% (respectively 51.2%) of that region's total labor force, the agriculture sector in Asia employed 49.7% (respectively 34.8%) of the total labor force, the agriculture sector in the Americas employed 10.8% (respectively 9.9%) of the total labor force, and the agriculture sector in Europe employed 14.8% (respectively 9.5%) of the total labor force. These regional differences in employment shares are generally associated with regional differences in national incomes: low agricultural employment shares are generally associated with higher national incomes. To illustrate, Table 1.1 reports a breakdown of employment shares in world and Asian agriculture in 2014 by national income category (and gender). This table reveals that in 2014 the agricultural sector in low (respectively high) income countries of the world employed 68.8% (respectively 3.2%) of the world's labor force; it also reveals that in 2014 the agricultural sector in low (respectively high) income Asian countries employed 65.3% (respectively 4.0%) of that region's labor force.

The Food and Agriculture Organization (FAO) estimates that in 1970 the agriculture sector accounted for 9.1% of world GDP; by 2014, this percentage had fallen to 4.3%. Figure 1.2 reports a breakdown of this change by year and by region. Again, this figure indicates that the agriculture sectors in Africa and Asia have for many years accounted for a much larger proportion of GDP than the agriculture sectors in the Americas and Europe: in 1970 (respectively 2014), the agriculture sector in Africa accounted for 21.2% (respectively 15.0%) of the region's GDP, the agriculture sector in Asia accounted for 21.1% (respectively 7.5%) of GDP, the agriculture sector in the Americas accounted for 3.6% (respectively 2.1%) of GDP, and the agriculture sector in Europe accounted for 9.3% (respectively 1.6%) of GDP.

1.2 Current Status of Agricultural Productivity Measurement

Agricultural productivity measurement typically involves the computation of partial and/or total factor productivity measures. A partial factor productivity (PFP) measure is a volume (i.e., quantity) measure of outputs divided by a volume measure of a subset of inputs. PFP measures that have been widely used in agriculture include output per hectare (i.e., land productivity), output per person (i.e., labor productivity), and output per unit of physical capital (i.e., capital productivity).

TABLE 1.1


AGRICULTURAL EMPLOYMENT AS A PERCENTAGE OF THE TOTAL LABOR FORCE, 2014

Region/Country	Total	Female	Male
World: Low income	68.8	66.2	71.8
World: Lower-middle income	41.0	38.3	46.8
World: Upper-middle income	24.3	22.6	26.5
World: High income	3.2	4.0	2.2
Asia and the Pacific: Low income	65.3	60.7	71.5
Asia and the Pacific: Lower-middle income	42.9	39.3	51.3
Asia and the Pacific: Upper-middle income	29.4	26.0	33.8
Asia and the Pacific: High income	4.0	4.4	3.5

Kumbhakar [7], for example, used farm-level data to analyze labor productivity in India over the period 1980 to 1985; Holden, et al [6] used farm-plot-level data to analyze land productivity in Ethiopia over the period 1998 to 2006.

A total factor productivity (TFP) measure is a volume measure of outputs divided by a volume measure of all inputs. TFP measures that have been widely used in agriculture include the Fisher, Törnqvist, Malmquist, Hicks-Moorsteen (HM), Elteto-Koves-Szulc (EKS) and Caves-Christensen-Diewert (CCD) TFP indices. Mullen [10], for example, used farm-level data and the Fisher TFP index to measure agricultural productivity change in Australia over the period 1954 to 2004; Coelli and Rao [2] used FAO data and the Malmquist index to measure agricultural productivity changes in 93 countries over the period 1980 to 2000; and Hadley, et al [5] used farm-level data and the HM index to measure agricultural productivity changes in England and Wales over the period 2000 to 2004.

Unfortunately, except in restrictive special cases (e.g., there is only one output and only one input), the TFP indices described above do not satisfy basic axioms from index theory. For example, the

Fisher, Törnqvist, Malmquist, and HM TFP indices do not satisfy a transitivity axiom. This axiom says that if we compare the productivity of farmer A and farmer C indirectly through farmer B, then we must get the same index number as when we compare the productivity of farmers A and C directly. TFP indices that have good axiomatic properties include the Lowe and Geometric Young (GY) TFP indices. Both of these indices have been used in agriculture. O'Donnell [11], for example, uses United States Department of Agriculture (USDA) data and the Lowe index to measure agricultural productivity change in 48 states over the period 1960 to 2004; more recently, O'Donnell [12] uses USDA data and the GY index to measure agricultural productivity change in 11 states over the period 1960 to 1989.

1.3 Current Explanations for Agricultural Productivity Change

Measures of productivity change are measures of output change divided by measures of input change. Economists have many different models that can be used to explain output change and input change (and therefore productivity change). For example, it is common for business economists to assume that firms are price takers in output and input markets, and that businessmen choose outputs and inputs in order to maximize profits. In such cases, profit-maximizing output and input quantities will depend, inter alia, on relative output and input prices (i.e., the terms of trade) and characteristics of the 'production possibilities set' (i.e., the set of output-input combinations that are technically possible).

As another example, it is common for agricultural economists to assume that firms are price takers in output and input markets, and that farmers choose inputs to maximize expected profits in the face of uncertainty about output prices and characteristics of the production environment (e.g., rainfall). In these cases, expected revenue-maximizing inputs (and, ultimately, realized outputs) will change with input prices, expectations about output prices, environmental variables, and characteristics of the production possibilities set. Much more complex models of firm behavior are available. In most, if not all, of these models, output and/or input change (and therefore productivity change) depends, inter alia, on characteristics of the production possibilities set. Different explanations for output and input change (and therefore productivity change) generally involve different assumptions about this set. For example, Kumbhakar [7] assumes that the boundary of the production possibilities set (i.e., the production frontier) can be represented by a translog function; Coelli and Rao [2] assume that the production frontier exhibits constant returns to scale (CRS).

In practice, observed outputs and inputs may differ from optimal outputs and inputs because firm managers do not have enough knowledge and/or skills to solve complex maximization problems (i.e., they are boundedly rational). The failure to solve optimization problems is known as inefficiency (e.g., the difference between observed profit and maximum possible profit is known as profit inefficiency). Different explanations for output and input change (and therefore productivity change) allow for different types of inefficiency. For example, Coelli and Rao [2] allow for output-oriented technical inefficiency (i.e., the failure to produce maximum output from given inputs).

CHAPTER 2 PRODUCTIVITY CONCEPTS AND ANALYTICAL METHODS

This section provides a brief overview of the main concepts and methods used in this project to analyze a total factor productivity (TFP) change. It draws heavily on O'Donnell [12, 13].

2.1 Production Technologies

In O'Donnell [12, 13], the term 'production technology' (or simply technology) refers to a technique, method or system for transforming inputs into outputs (e.g., a technique for planting and growing rice). For practical purposes, O'Donnell [12, 13] finds it convenient to think of a technology as a book of instructions, or recipe. The set of technologies that exist in any given period is called a technology set. If we think of a technology as a book of instructions, then we can think of a technology set as a library.

Common Assumptions

It is possible to measure TFP change without knowing anything about technologies, (i.e., we can calculate changes in output-input ratios without knowing anything about how the inputs are used to produce the outputs). However, we generally need to make some assumptions about technologies in order to explain productivity change. It is common to assume the following:

- A1: It is possible to produce zero output.
- A2: There is a limit to what can be produced using a finite amount of inputs.
- A3: A positive amount of at least one input is needed in order to produce a positive amount of any output.
- A4: The set of outputs that can be produced using given inputs contains all the points on its boundary.
- A5: The set of inputs that can produce given outputs contains all the points on its boundary.
- A6: If given inputs can be used to produce particular outputs, then they can also be used to produce fewer outputs (outputs are strongly disposable).
- A7: If given outputs can be produced using particular inputs, then they can also be produced using more inputs (inputs are strongly disposable).

- A8: If a given output-input combination is possible in a particular production environment, then it is also possible in a better production environment (environmental variables are strongly disposable).
- A9: If two input-output combinations are possible, then any linear combination of those input-output combinations is also possible (production possibilities sets are convex).

This project is underpinned by assumptions A2 and A6 to A8. If these assumptions are true, then technologies can be represented using various sets and functions. In this project, the focus is on output sets and output distance functions.

Output Sets

An output set is a set containing all outputs that can be produced using given inputs. A period-andenvironment-specific output set is a set containing all outputs that can be produced using given inputs in a given period in a given production environment. For a precise definition, let $x = (x_1, ..., x_M)'$, $q = (q_1, ..., q_N)'$ and $z = (z_1, ..., z_J)'$ denote vectors of inputs, outputs, and environmental variables, respectively. Mathematically, the set of outputs that can be produced using inputs x in period t (i.e., using the period-t technology set) in an environment characterized by z is [13]:

$$P^{t}(x, z) = \{q: x \text{ can produce } q \text{ in period } t \text{ in environment } z\}.$$
 (2.1)

The boundary of this set is a period-and-environment-specific frontier. A large part of productivity and efficiency analysis is concerned with estimating how the position and shape of this frontier changes over time. An example of an output set is the following:

$$P'(x,z) = \left\{ q : \sum_{n=1}^{N} \gamma_n q_n \le A(t) \prod_{j=1}^{J} z_j^{\delta_j} \prod_{m=1}^{M} x_m^{\beta_m} \right\}$$
(2.2)

where A(t) > 0 is a measure of how the production frontier changes over time; $(\beta_1, \ldots, \beta_M)' \ge 0$ is a vector of output elasticities; $(\gamma_1, \ldots, \gamma_N)' \ge 0$ is a vector of parameters that sum to one; and $\sum_m \beta_m = r$ is the elasticity of scale. The elasticity of scaple measures the percent increase in the output vector associated with a one percent increase in the input vector, holding all other variables fixed. The production frontier is said to exhibit decreasing returns to scale (DRS), constant returns to scale (CRS) or increasing returns to scale (IRS) as the elasticity of scale is less than, equal to, or greater than one respectively.

Output Distance Functions

An output distance function (ODF) gives the reciprocal of the largest factor by which it is possible to scale up a given output vector when using a given input vector. For example, if it is technically possible for a firm to use its inputs to produce five times as much of every output, then the ODF takes the value $\rho = 1/5 = 0.2$. A period-and-environment-specific ODF gives the reciprocal of the largest factor by which it is possible to scale up a given output vector when using a given input vector in a given period in a given production environment. Mathematically, the reciprocal of the largest factor by which it is possible to scale up the output vector q when using inputs x in period tin an environment characterized by z is [13]:

$$D_{O}^{t}(x,q,z) = \inf \{ \rho > 0 : q / \rho \in P^{t}(x,z) \}.$$
(2.3)

ODFs are nonnegative and linearly homogeneous in outputs. If outputs are strongly disposable, then they are also nondecreasing in outputs. If assumptions A2 and A6 to A8 are true, then output sets and ODFs are equivalent representations of technologies. If the output set is given by (2.2), for example, then the ODF is:

$$D_{O}^{t}(x,q,z) = \left(A(t)\prod_{j=1}^{J} z_{j}^{\delta_{j}} \prod_{m=1}^{M} x_{m}^{\beta_{m}}\right)^{-1} \left(\sum_{n=1}^{N} \gamma_{n} q_{n}\right)$$
(2.4)

where A(t) > 0, $(\beta_1, \ldots, \beta_M)' \ge 0$, $(\gamma_1, \ldots, \gamma_N)' \ge 0$ and $\sum_n \gamma_n = 1$.

2.2 Managerial Behavior

The existence of different sets and functions has no implications for managerial behavior. The existence of the ODF, for example, does not mean that managers will attempt to scale up their output vectors until they reach the production frontier. Rather, they will tend to behave differently depending on what they value, and on what they can and cannot choose. This project focuses on managers who seek to maximize output and/or TFP. It is convenient at this point to introduce firm and time subscripts into the notation and, for example, let $x_{ii} = (x_{1ii}, \ldots, x_{Mii})'$ and $q_{ii} = (q_{1ii}, \ldots, q_{Nii})'$ denote the outputs and inputs of firm *i* in period *t*.

Output Maximization

If a firm manager places nonnegative values on outputs (not necessarily market values) and all other variables involved in the production process have been predetermined, then he/she will generally aim to maximize a measure of total output. If there is more than one output, then the precise form of the output maximization problem will depend on how easily the manager can choose the output mix. If the manager of firm *i* can only choose output vectors that are scalar multiples of $q_{ii} \ge 0$, then his/her period *t* output-maximization problem is [13]:

$$\max\{Q(q): q \propto q_{it}, D_O^t(x_{it}, q, z_{it}) \le 1\}$$
(2.5)

where Q(.) is a nonnegative, nondecreasing, linearly homogeneous, scalar-valued aggregator function satisfying $Q(q_{ii}) > 0$. The output vector that solves this problem is $\overline{q}_{it} \equiv q_{it} / D_O^t(x_{it}, q_{it}, z_{it})$. This vector lies on the production frontier. The associated aggregate output is $Q(\overline{q}_{it}) = Q(q_{it}) / D_O^t(x_{it}, q_{it}, z_{it})$.

TFP Maximization

If a firm manager places nonnegative values on outputs and inputs and all environmental variables have been predetermined, then he/she may aim to maximize a measure of TFP.

TFP is a volume (i.e., quantity) measure of total output divided by a volume measure of total input. If the manager of firm *i* can choose outputs and inputs freely, then his/her period-*t* TFP-maximization problem can be written as [13]:

$$\max_{x \ge 0, q \ge 0} \{ Q(q) \mid X(x) : D_{O}^{t}(x, q, z_{it}) \le 1 \}$$
(2.6)

where Q (.) and X (.) are nonnegative, nondecreasing, linearly homogeneous, scalar-valued aggregator functions with parameters (or weights) that represent the values the firm manager places on outputs and inputs. There may be several pairs of output and input vectors that solve this problem. Let q_{it}^* and x_{it}^* denote one such pair. This output-input combination lies on the production frontier. The associated maximum TFP is $TFP^t(z_{it}) = Q(q_{it}^*)/X(x_{it}^*) = Q$

2.3 Measures of Efficiency

Measures of efficiency can be viewed as measures of how well firm managers have solved different optimization problems. This project focuses on output-oriented measures of technical, scale and mix efficiency. These measures take values that lie between zero (indicating totally inefficient) and one (indicating fully efficient).

Output-oriented Technical Efficiency

The output-oriented technical efficiency (OTE) of manager i in period t can be viewed as a measure of how well he/she has solved the problem represented by equation (2.5). Mathematically, the OTE of manager i in period t is:

$$OTE^{t}(x_{it}, q_{it}, z_{it}) = Q(q_{it})/Q(\overline{q}_{it})$$
(2.7)

where $Q(q_{it})$ is the aggregate output of the firm and $Q(\overline{q}_{it}) = Q(q_{it})/D_O^t(x_{it}, q_{it}, z_{it})$ is the maximum aggregate output that is possible when using x_{it} to produce a scalar multiple of $q_{it} \ge 0$ in period t in an environment characterized by z_{it} . An equivalent definition is $OTE^t(x_{it}, q_{it}, z_{it}) = D_O^t(x_{it}, q_{it}, z_{it})$. These definitions can be found in O'Donnell [13]. However, the concept can be traced back at least as far as Farrell [4]. A manager may be technically inefficient because he/she did not choose the right technology (i.e., did not choose the right book from the library) and/or did not use the chosen technology properly (i.e., did not follow instructions).

Technical, Scale and Mix Efficiency

The technical, scale and mix efficiency (TSME) of manager i in period t can be viewed as a measure of how well he/she has solved the problem represented by equation (2.6). Mathematically, the TSME of manager i in period t is:

$$TSME^{t}(x_{it}, q_{it}, z_{it}) = TFP(x_{it}, q_{it})/TFP^{t}(z_{it})$$
(2.8)

where $TFP(x_{it}, q_{it}) = Q(q_{it})/X(x_{it})$ is the observed TFP of the firm and $TFP^t(z_{it}) = Q(q_{it}^*)/X(x_{it}^*)$ is the maximum TFP that is possible in period t in an environment characterized by z_{it} . Again, this definition can be found in O'Donnell [13]. Importantly, the TSME of a firm can be broken into output-oriented measures of technical efficiency and scale and mix efficiency. The technical efficiency component is the measure of OTE defined by equation 2.7. The associated output-oriented scale and mix efficiency (OSME) of manager *i* in period *t* is [13]:

$$OSME^{t}(x_{it}, q_{it}, z_{it}) = TFP^{t}(x_{it}, \overline{q}_{it}) / TFP^{t}(z_{it})$$

$$(2.9)$$

where $TFP(x_{it}, \overline{q}_{it}) = Q(\overline{q}_{it})/X(x_{it})$ is the maximum TFP possible when using x_{it} to produce a scalar multiple of $q_{it} \ge 0$ in period t in an environment characterized by z_{it} . Equivalently, $OSME^t(x_{it}, q_{it}, z_{it}) = TSME^t(x_{it}, q_{it}, z_{it})/OTE^t(x_{it}, q_{it}, z_{it})$. Thus, OSME can be viewed as the component of TSME that remains after accounting for OTE. This concept can be traced back at least as far as O'Donnell [11].

2.4 Index Numbers

An index is a measure of change in a variable (or group of variables) over time and/or space. A TFP index is an output index divided by an input index. This project is concerned with output and input indices that are proper in the sense that they satisfy the axioms listed in O'Donnell [12, 13].

Output Indices

In O'Donnell [12, 13], an output quantity index that compares q_{it} with q_{ks} using the latter as the reference (or base) vector is defined as any variable of the form

$$QI(q_{ks}, q_{it}) = Q(q_{it})/Q(q_{ks})$$
 (2.10)

where Q (.) is any nonnegative, nondecreasing, linearly homogeneous, scalar-valued aggregator function. Output indices that are constructed in this way are proper in the sense that they satisfy the index number axioms listed in O'Donnell [12,13]. One of these axioms is transitivity. Transitivity says that if we compare the outputs of farmer A and farmer C indirectly through farmer B, then we must get the same index number as when we compare the outputs of farmers A and C directly. Any nonnegative, nondecreasing, linearly homogeneous, scalar-valued aggregator function can be used for purposes of constructing a proper output index. This project constructs an additive index. Additive indices are constructed using aggregator functions of the form $Q(q_{it}) \propto a'q_{it}$ where a is any nonnegative vector of weights. The class of additive output indices includes the Lowe output index of O'Donnell [11].

Input Indices

In O'Donnell [12, 13], an input quantity index that compares x_{it} with x_{ks} using the latter as the reference vector is defined as any variable of the form

$$XI(x_{ks}, x_{it}) = X(x_{it})/X(x_{ks})$$
 (2.11)

where X (.) is a nonnegative, nondecreasing, linearly homogeneous, scalar-valued aggregator function. Again, all input indices that are constructed in this way are proper in the sense that satisfy the index number axioms listed in O'Donnell [12, 13]. Again, this project constructs an additive index. Additive input indices are constructed using aggregator functions of the form $X(x_{it}) \propto b' x_{it}$ where b is any nonnegative vector of weights. The class of additive input indices the Lowe input index of O'Donnell [11].

TFP Indices

In O'Donnell [12, 13], an index that compares the TFP of firm i in period t with the TFP of firm k in period s is any variable of the form

$$TFPI(x_{ks}, q_{ks}, x_{it}, q_{it}) = QI(q_{ks}, q_{it}) / XI(x_{ks}, x_{it})$$
(2.12)

where *QI* (.) is any proper output index and *XI* (.) is any proper input index. In O'Donnell [12, 13], a TFP index is said to be "proper" if and only if it can be written in this form. The class of proper TFP indices includes the Lowe TFP index of O'Donnell [11] and the geometric Young (GY) TFP index of O'Donnell [12].

2.5 Data Envelopment Analysis

Productivity analysis involves estimating production frontiers. Data envelopment analysis (DEA) methods for estimating production frontiers can be traced back at least as far as Farrell [4]. The most common DEA models are underpinned by the following assumptions [13]:

• **DEA1:** Production possibilities sets can be represented by distance, revenue, cost or profit functions.

- **DEA2:** All relevant quantities, prices and/or environmental variables are observed and measured without error.
- DEA3: Production frontiers are piecewise (or locally) linear.
- DEA4: Outputs, inputs and environmental variables are strongly disposable.
- **DEA5:** Production possibilities sets are convex.

Under these assumptions, most measures of efficiency can be estimated by solving linear programs (LPs).

Estimating OTE

Estimating the measure of OTE defined by equation (2.7) involves estimating the ODF. If assumptions DEA1 to DEA3 are true, then the ODF is $D_O^{it}(x_{it}, q_{it}, z_{it}) = \gamma'_{it} q_{it} / (\alpha_{it} + \delta'_{it} z_{it} + \beta'_{it} x_{it})$ where $\gamma_{it}, \alpha_{it}, \delta_{it}$ and are unknown parameters to be estimated. Estimating these parameters involves maximizing $\gamma'_{it} q_{it} / (\alpha_{it} + \delta'_{it} z_{it} + \beta'_{it} x_{it})$ subject to constraints that ensure that assumptions DEA4 and DEA5 are satisfied. Assumption DEA4 will be satisfied if and only if $\gamma_{it} \ge 0$, $\delta_{it} \ge 0$ and $\beta_{it} \ge 0$. If there are *I* firms in the dataset, then assumption DEA5 will be satisfied if and only if $\gamma'_{it} q_{hr} \le \alpha_{it} + \delta'_{it} z_{hr} + \beta'_{it} x_{hr}$ for all $h \le I$ and $r \ge t$. For identification purposes, it is common to set $\gamma'_{it} q_{it} = 1$. With all these constraints, the estimation problem becomes the following:

$$\min_{\alpha_{it},\delta_{it},\beta_{it},\gamma_{it}} \{ \alpha_{it} + \delta'_{it} z_{it} + \beta'_{it} x_{it} : \gamma_{it} \ge 0, \delta_{it} \ge \beta_{it} \ge 0,
\gamma'_{it}q_{hr} \le \alpha_{it} + \delta'_{it} z_{it} + \beta'_{it} x_{hr} \text{ for all } h \le I
\text{ and } r \le t, \gamma'_{it}q_{it} = 1 \}.$$
(2.13)

This is a standard LP. The value of the objective function at the optimum is an estimate of the reciprocal of $OTE^{t}(x_{it}, q_{it}, z_{it})$. The problem represented by equation (2.13) can be found in O'Donnell, et al [14].

Equation (2.13) is a primal LP. Every primal LP has a dual form with the property that if the primal and its dual both have feasible solutions, then the optimized values of the two objective functions are equal. The dual form of equation (2.13) is the following:

$$\max_{\mu,\lambda_{11},...,\lambda_{lt}} \{\mu : \mu q_{it} \le \sum_{h=1}^{I} \sum_{r=1}^{t} \lambda_{hr} q_{hr}, \\ \sum_{h=1}^{I} \sum_{r=1}^{t} \lambda_{hr} z_{hr} \le z_{it}, \sum_{h=1}^{I} \sum_{r=1}^{t} \lambda_{hr} x_{hr} \le x_{it}, \\ \sum_{h=1}^{I} \sum_{r=1}^{t} \lambda_{hr} = 1, (\lambda_{11},...,\lambda_{lt})' \ge 0\}.$$
(2.14)

Again, this is a standard LP. The value of the objective function at the optimum is an estimate of the reciprocal of OTE^t (x_{it} , q_{it} , z_{it}). The problem represented by equation (2.14) can be found in O'Donnell, et al [14].

Equation (2.14) is suitable for estimating OTE when environmental variables are cardinal variables. In these cases, period-and-environment-specific frontiers should be estimated using observations on firms

that operated in *any* environment. In this project, the only environmental variable is a nominal variable. In these cases, period-and-environment-specific frontiers should be estimated using observations on firms that operated in specific environments. Thus, in this project, the dual LP is the following:

$$\max_{\mu,\lambda_{11},...,\lambda_{lt}} \{ \mu : \mu q_{it} \le \sum_{h=1}^{t} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} q_{hr}, \\ \sum_{h=1}^{l} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} z_{hr} \le z_{it}, \sum_{h=1}^{l} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} x_{hr} \le x_{it}, \\ \sum_{h=1}^{l} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} = 1, (\lambda_{11},...,\lambda_{lt})' \ge 0 \}$$
(2.15)

where $d_{hrit} = I(z_{hr} = z_{it})$ is a dummy variable that takes the value 1 if, in period *r*, firm *h* operated in an environment characterized by z_{it} . This dummy variable effectively deletes from the sample any observations on firms that did not operate in the same environment as firm *i* in period *t*. Again, this is a standard LP. The value of the objective function at the optimum is an estimate of the reciprocal of $OTE^t(x_{it}, q_{it}, z_{it})$.

Estimating TSME

Estimating the measure of TSME defined by equation (2.8) involves estimating the maximum TFP that is possible in a given period in a given production environment. If the environmental variable is a nominal variable, then the estimation problem can be written as:

$$\max_{q,x,\lambda_{11},...,\lambda_{lt}} \{Q(q)/X(x) : q \leq \sum_{h=1}^{t} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} q_{hr}, \\ \sum_{h=1}^{l} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} z_{hr} \leq z_{it}, \sum_{h=1}^{l} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} x_{hr} \leq x, \\ \sum_{h=1}^{l} \sum_{r=1}^{t} \lambda_{hr} d_{hrit} = 1, (\lambda_{11},...,\lambda_{lt})' \geq 0\}.$$
(2.16)

This is a fractional program. The value of the objective function at the optimum is an estimate of $TFP^{t}(z_{it})$. The problem can be rewritten as:

$$\max_{\overline{q},\overline{x},\theta_{11},...,\theta_{lt}} \{ \mathcal{Q}(\overline{q}) : \overline{q} \leq \sum_{h=1}^{l} \sum_{r=1}^{l} \theta_{hr} d_{hrit} q_{hr}, \quad X(\overline{x}) = 1,$$

$$\sum_{h=1}^{l} \sum_{r=1}^{l} \theta_{hr} d_{hrit} z_{hr} \leq \kappa z_{it}, \sum_{h=1}^{l} \sum_{r=1}^{l} \theta_{hr} \theta_{hrit} x_{hr} \leq \overline{x},$$

$$\sum_{h=1}^{l} \sum_{r=1}^{l} \theta_{hr} d_{hrit} = \kappa, (\theta_{11},...,\theta_{lt})' \geq 0 \}.$$
(2.17)

The value of the objective function at the optimum is still an estimate of $TFP^{t}(z_{it})$. The value of κ at the optimum is an estimate of $1/X(x_{it}^{*})$ The values of \overline{q} and \overline{x} at the optimum are estimates of $q_{it}^{*}/X(x_{it}^{*})$ and $x_{it}^{*}/X(x_{it}^{*})$ If the aggregator functions are linear functions, as they are in this project, then equation (2.17) is an LP.

Decomposing TFP Change

DEA methods can be used to decompose any proper TFP index into a measure of environment and technical change and a measure of technical, scale and mix efficiency change. Mathematically,

$$TFPI(x_{ks}, q_{ks}, x_{it}, q_{it}) = \left[\frac{TFP^{t}(z_{it})}{TFP^{s}(z_{ks})}\right] \left[\frac{TSME^{t}(x_{it}, q_{it}, z_{it})}{TSME^{s}(x_{ks}, q_{ks}, z_{ks})}\right]$$
(2.18)

where $TFP^t(z_{il})$ is the maximum TFP that is possible in period t in an environment characterized by z_{il} , and $TSME^t(x_{il}, q_{il}, z_{il})$ is the measure of TSME defined by equation (2.8). The first ratio on the right-hand side is an environment and technology index (ETI). The second ratio is a technical, scale and mix efficiency index (TSMEI). The two ratios on the right-hand side of equation 2.18 can be broken into smaller components. First, the ETI can be broken into separate measures of environmental change and technical change. Mathematically,

$$\frac{TFP^{t}(z_{it})}{TFP^{s}(z_{ks})} = \left[\frac{TFP^{t}(z_{it}) TFP^{s}(z_{it})}{TFP^{t}(z_{ks}) TFP^{s}(z_{ks})}\right]^{1/2} \left[\frac{TFP^{t}(z_{it}) TFP^{t}(z_{ks})}{TFP^{s}(z_{it}) TFP^{s}(z_{ks})}\right]^{1/2}.$$
(2.19)

The first ratio on the right-hand side is an environment index (EI). The second ratio is a technology index (TI). Next, the TSMEI in equation (2.18) can be broken into separate measures of technical efficiency change and scale and mix efficiency change. Mathematically,

$$\frac{TSME^{t}(x_{it}, q_{it}, z_{it})}{TSME^{s}(x_{ks}, q_{ks}, z_{ks})} = \left[\frac{OSME^{t}(x_{it}, q_{it}, z_{it})}{OSME^{s}(x_{ks}, q_{ks}, z_{ks})}\right] \left[\frac{OTE^{t}(x_{it}, q_{it}, z_{it})}{OTE^{s}(x_{ks}, q_{ks}, z_{ks})}\right].$$
(2.20)

The first ratio on the right-hand side is an output-oriented scale and mix efficiency index (OSMEI). The second ratio is an output-oriented technical efficiency index (OTEI). In summary, DEA methods can be used to decompose any TFP index into the product of an environment index, a technology index, an output-oriented scale and mix efficiency index, and an output-oriented technical efficiency index, i.e., TFPI = EI × TI × OSMEI × OTEI.

2.6 Stochastic Frontier Analysis

Stochastic frontier analysis (SFA) methods for estimating production frontiers can be traced back to Aigner, et al [1] and Meeusen and van den Broeck [9]. Stochastic frontier models (SFMs) allow for the possibility that some variables involved in the production process are unobserved or measured with error. They also allow for the fact that the functional forms of relevant distance, revenue, cost and/or profit functions are generally unknown. SFMs merely assume that these functions exist.

Output-oriented Models

If the ODF exists, then it is linearly homogeneous in outputs. This means we can write $D_O^t(x_{it}, q_{it}, z_{it}) = q_{1it} D_O^t(x_{it}, q_{it}^*, z_{it})$ where $q_{it}^* \equiv q_{it}/q_{1it}$ is a vector of normalized outputs. Equivalently,

$$\ln q_{1it} = -\ln D_O^t(x_{it}, q_{\perp}^*, z_{it}) - u_{it}$$
(2.21)

where $u_{it} \equiv -\ln OTE^t (x_{it}, q_{it}, z_{it}) \ge 0$ is an output-oriented technical inefficiency effect. If the functional form of the ODF is unknown, then (2.21) can be rewritten as

$$\ln q_{1it} = f^{t}(x_{it}, q_{it}^{*}, z_{it}) + v_{it} - u_{it}$$
(2.22)

where f^t (.) is an arbitrary approximating function chosen by the researcher and $v_{it} \equiv -\ln D_O^t(x_{it}, q_{it}^*, z_{it}) - f^t(x_{it}, q_{it}^*, z_{it})$ is an unobserved variable that accounts for functional

form errors and other sources of statistical noise. The exact nature of the noise component depends on both the SFM and the unknown ODF. For example, suppose the SFM is

$$\ln q_{1it} = \sum_{j=1}^{J} \alpha_j d_{jit} + \lambda t + \sum_{m=1}^{M} \beta_m \ln x_{mit} - \sum_{n=1}^{N} \xi_n \ln q_{nit}^* + v_{it} - u_{it}$$
(2.23)

where d_{jit} is a dummy variable that takes the value 1 if firm *i* operated in environment *j* in period *t* (and 0 otherwise) and $\Sigma_n \xi_n = 1$. If the ODF is given by (2.4), for example, then the noise component in this model is

$$v_{it} = [\ln A(t) - \lambda t] + \left[\sum_{j=1}^{J} \delta_{j} \ln z_{jit} - \sum_{j=1}^{J} \alpha_{j} d_{jit} \right] \\ + \left[\sum_{n=1}^{N} \xi_{n} \ln q_{nit}^{*} - \ln \left(\sum_{n=1}^{N} \gamma_{n} q_{nit}^{*} \right) \right]$$
(2.24)

The first term on the right-hand side can be viewed as functional form error. The second term can be viewed as a measurement error. The last term is a functional form error.

Maximum Likelihood Estimation

Two of the most common assumptions found in the stochastic frontier literature are:

- ML1: u_{ii} is an independent $N^+(0, \sigma_{ii}^2)$ random variable.
- ML2: v_{ii} is an independent $N(0, \sigma_v^2)$ random variable.

Here, the term 'independent' means, inter alia, that v_{ii} and u_{ii} are not correlated with the other explanatory variables or with each other. Assumption ML1 says that u_{ii} is a half-normal random variable obtained by truncating the $N(0, \sigma_u^2)$ distribution from below at zero. If ML1 and ML2 are true, then ML estimators for the unknown parameters are consistent.

Decomposing TFP Change

SFA methods can be used to decompose any proper TFP index into a measure of technical efficiency change, a measure of the change in statistical noise, and a combined measure of environmental change, technical change and scale and mix efficiency change. Mathematically,

$$TEPI(x_{ks}, q_{ks}, x_{it}, q_{it}) = \left[\frac{Q(q_{it})}{Q(q_{ks})} \frac{q_{1ks}}{q_{1it}} \frac{\exp[f^{t}(x_{it}, q_{it}^{*}, z_{it})]}{\exp[f^{s}(x_{ks}, q_{ks}^{*}, z_{ks})]} \frac{X(x_{ks})}{X(x_{it})}\right] \\ \times \left[\frac{\exp(-u_{it})}{\exp(-u_{ks})}\right] \left[\frac{\exp(v_{it})}{\exp(v_{ks})}\right]$$
(2.25)

The first term on the right-hand side is an output-oriented environment, technology and scale and mix efficiency index (OETSMEI). The second term is an output-oriented technical efficiency index (OTEI). The final term is a statistical noise index (SNI).

Depending on the precise form of the SFM, finer output-oriented decompositions of proper TFP indices may be available. For example, if the SFM is given by (2.23), then the OETSMEI in (2.25)

can be decomposed further into separate measures of environmental change, technical change, and scale and mix efficiency change. Mathematically,

$$\frac{Q(q_{it})}{Q(q_{ks})} \frac{q_{1ks}}{q_{1it}} \frac{\exp[f'(x_{it}, q_{it}^*, z_{it})]}{\exp[f^s(x_{ks}, q_{ks}^*, z_{ks})]} \frac{X(x_{ks})}{X(x_{it})} = \left[\frac{\exp(\Sigma_j \alpha_j d_{jtt})}{\exp(\Sigma_j \alpha_j d_{jks})}\right] \times \left[\frac{\exp(\lambda t)}{Q(q_{ks})}\right] \times \left[\frac{Q(q_{it})}{Q(q_{ks})} \prod_{n=1}^{N} \left(\frac{q_{nks}}{q_{nit}}\right)^{\xi_n} \frac{X(x_{ks})}{X(x_{it})} \prod_{m=1}^{M} \left(\frac{x_{mit}}{x_{mks}}\right)^{\beta_m}\right].$$
(2.26)

The first term on the right-hand side is an environment index (EI). The second term is a technology index (TI). The final term is an output-oriented scale and mix efficiency index (OSMEI). If there is only one output, then the output components in the OSMEI vanish. If there is only one input and $\Sigma_m \beta_m = 1$, then the input components vanish. In summary, depending on the form of the SFM, SFA methods can be used to decompose any TFP index into the product of an environment index, a technology index, an output-oriented scale and mix efficiency index, an output-oriented technical efficiency index, and a statistical noise index, i.e., TFPI = EI × TI × OSMEI × OTEI × SNI.

CHAPTER 3 **DATA AND ESTIMATION**

This section summarizes the data sources, data cleaning procedures and basic estimation results. The ML estimates reported later in this section are used to derive the detailed estimates of TFP and efficiency change reported in Sections 4 and 5.

3.1 Data

The research team sourced output, input, and agricultural GDP data from the FAOSTAT service of the FAO. These data cover the agricultural sectors of I = 91 countries for the T = 55 years from 1961 to 2015. The team obtained employment share data from the ILOSTAT service of the ILO; these data only cover the period 2000 to 2014.

The agricultural sector includes divisions 1–5 of the International Standard Industrial Classification (ISIC, revision 3) and includes cultivation of crops, livestock production, forestry, hunting, and fishing. This subsection discusses the countries, the variables and the data cleaning procedures.

Countries

All countries were classified into one of four climate zones (wet temperate, dry temperate, wet tropical/subtropical, and dry tropical/subtropical) and one of four geographical regions (Africa, the Americas, Asia, and Europe). Table 3.1 lists all ninety-one countries and their climate zones and regional classifications. The countries listed in this table include 17 APO member countries, namely Bangladesh, Cambodia, India, Indonesia, Islamic Republic of Iran, Japan, the Republic of Korea, Lao PDR, Malaysia, Mongolia, Nepal, Pakistan, the Philippines, the Republic of China, Sri Lanka, Thailand, and Vietnam (rows corresponding to these countries are marked with an asterisk *). Data for three APO member countries, Fiji, Hong Kong, and Singapore were unavailable or otherwise considered unreliable.

Variables

The research team attempted to measure all the outputs and inputs involved in agricultural production in each of the countries. Wherever possible, variables were disaggregated to a level where all items within any output or input category could be regarded as reasonably homogeneous, e.g., total agricultural output was disaggregated into crop output and livestock output. The research team was careful to distinguish between measures of volume (or quantity), price, and value. The research team assembled data on N = 3 outputs (crops, livestock, and greenhouse gas emissions) and M = 4 inputs (land, labor, fertilizers, and tractors). All of these variables were normalized to have unit means.

Other inputs such as seeds, pesticides, and machinery other than tractors were unobserved and therefore omitted. This is one source of statistical noise. Characteristics of production environments (e.g., rainfall and temperature) were also unobserved and accounted for by climate dummy variables. This is another source of statistical noise. Descriptive statistics for all variables are reported in Table 3.2. The mean values of the dummy variables give the proportions of observations classified by each climate zone. Thus, for example, 12.1% of countries/observations were in the wet temperate zone.

D	Country	Climate	Region
74	Afghanistan	Dry tropical/subtropical	Asia
75	Algeria	Dry tropical/subtropical	Africa
76	Angola	Dry tropical/subtropical	Africa
12	Argentina	Dry temperate	Americas
13	Australia	Dry temperate	Asia
I	Austria	Wet temperate	Europe
39*	Bangladesh	Wet tropical/subtropical	Asia
14	Belgium-Luxembourg	Dry temperate	Europe
10	Bolivia	Wet tropical/subtropical	Americas
77	Botswana	Dry tropical/subtropical	Africa
41	Brazil	Wet tropical/subtropical	Americas
15	Bulgaria	Dry temperate	Europe
13*	Cambodia	Wet tropical/subtropical	Asia
14	Cameroon	Wet tropical/subtropical	Africa
16	Canada	Dry temperate	Americas
78	Chad	Dry tropical/subtropical	Africa
2	Chile	Wet temperate	Americas
-	PR China	Dry temperate	Asia
59*	ROC	Wet tropical/subtropical	Asia
15	Colombia	Wet tropical/subtropical	Americas
18	Congo	Wet tropical/subtropical	Africa
16	Costa Rica	Wet tropical/subtropical	Americas
12	Cote d'Ivoire	Wet tropical/subtropical	Africa
17	Cuba	Wet tropical/subtropical	Americas
19	Denmark	Dry temperate	Europe
19	Ecuador	Wet tropical/subtropical	Americas
79	Egypt	Dry tropical/subtropical	Africa
50	El Salvador	Wet tropical/subtropical	Americas
20	Finland	Dry temperate	Europe
21	France	Dry temperate	Europe
22	Germany	Dry temperate	Europe
51	Ghana	Wet tropical/subtropical	Africa
23	Greece	Dry temperate	Europe
52	Guatemala	Wet tropical/subtropical	Americas
53	Guinea	Wet tropical/subtropical	Africa
54	Honduras	Wet tropical/subtropical	Americas
24	Hungary	Dry temperate	Europe
30*	India	Dry tropical/subtropical	Asia
55*	Indonesia	Wet tropical/subtropical	Asia
31*	IR Iran	Dry tropical/subtropical	Asia
32	Iraq	Dry tropical/subtropical	Asia
3	Ireland	Wet temperate	Europe
, 25	Israel	Dry temperate	Asia
26	Italy	Dry temperate	Europe
1*	Japan	Wet temperate	Asia

Continued on next page

Continued from previous page

ID	Country	Climate	Region
83	Kenya	Dry tropical/subtropical	Africa
8*	ROK	Wet temperate	Asia
56*	Lao PDR	Wet tropical/subtropical	Asia
84	Libya	Dry tropical/subtropical	Africa
57	Madagascar	Wet tropical/subtropical	Africa
58	Malawi	Wet tropical/subtropical	Africa
59*	Malaysia	Wet tropical/subtropical	Asia
85	Mali	Dry tropical/subtropical	Africa
86	Mexico	Dry tropical/subtropical	Americas
27*	Mongolia	Dry temperate	Asia
87	Morocco	Dry tropical/subtropical	Africa
88	Mozambique	Dry tropical/subtropical	Africa
60	Myanmar	Wet tropical/subtropical	Asia
5*	Nepal	Wet temperate	Asia
28	Netherlands	Dry temperate	Europe
6	New Zealand	Wet temperate	Asia
61	Nicaragua	Wet tropical/subtropical	Americas
62	Nigeria	Wet tropical/subtropical	Africa
18	North Korea	Dry temperate	Asia
7	Norway	Wet temperate	Europe
29*	Pakistan	Dry temperate	Asia
63	Panama	Wet tropical/subtropical	Americas
64	Papua New Guinea	Wet tropical/subtropical	Asia
65	Paraguay	Wet tropical/subtropical	Americas
66	Peru	Wet tropical/subtropical	Americas
67*	Philippines	Wet tropical/subtropical	Asia
30	Poland	Dry temperate	Europe
31	Portugal	Dry temperate	Europe
89	South Africa	Dry tropical/subtropical	Africa
32	Spain	Dry temperate	Europe
68*	Sri Lanka	Wet tropical/subtropical	Asia
33	Sweden	Dry temperate	Europe
9	Switzerland	Wet temperate	Europe
34	Syria	Dry temperate	Asia
37	Tanzania	Dry temperate	Africa
70*	Thailand	Wet tropical/subtropical	Asia
35	Tunisia	Dry temperate	Africa
36	Turkey	Dry temperate	Asia Africa
71 10	Uganda UK	Wet tropical/subtropical	
	USA	Wet temperate	Europe Americas
38 11		Dry temperate Wet temperate	Americas
72	Uruguay Venezuela	Wet tropical/subtropical	Americas
72 73*	Vietnam	Wet tropical/subtropical	Americas Asia
90	Zambia	Dry tropical/subtropical	Asia
90 91	Zimbabwe	Dry tropical/subtropical	Africa
21			Anca

* APO member country

Data Cleaning

Data on the output and input quantity variables listed in Table 3.2 were downloaded from FAOSTAT. Tractor data from the FAO were incomplete, i.e., there were many missing values. A more complete dataset was constructed using additional tractor data provided by national experts and contained in a report prepared for the APO in 2013. The tractor data contained in the APO 2013 report only ranged from 1980 to 2009. The series needed to be extrapolated in order to correct any missing values and construct a complete time series. This is another source of statistical noise.

Two separate data series for the consumption of fertilizers were available on the FAO website. One series ranged from 1961 to 2002 and the other from 2002 to 2012. Econometric methods were used to test the consistency of the two series for each country. Consistent fertilizer series were consolidated into a single fertilizer series. Otherwise, the more recent data series was used. This is another source of statistical noise.

Varia	able	Mean	Std. Dev.	Minimum	Maximum
q ₁	Crops	1	2.954	0.002	45.294
<i>q</i> ₂	Livestock	1	2.770	0.006	37.959
<i>q</i> ₃	Emissions	1	2.242	0.008	18.338
d_1	Wet temperate	0.121	0.326	0	1
d_2	Dry temperate	0.297	0.457	0	1
d ₃	Wet tropical/subtropical	0.385	0.487	0	1
d_4	Dry tropical/subtropical	0.198	0.398	0	1
<i>X</i> ₁	Land	1	2.141	0.013	13.255
<i>X</i> ₂	Labor	1	3.625	0.006	30.490
X ₃	Fertilizers	1	3.553	4.3E-05	52.039
<i>X</i> ₄	Tractors	1	2.802	2.2E-05	24.613

TABLE 3.2

DESCRIPTIVE STATISTICS FOR SELECTED VARIABLES

Cleaning the dataset involved inspecting minima, maxima, scatterplots, and histograms of variables; ratios of variables; residuals obtained from simple regression models; and efficiency estimates obtained from simple DEA models. Records were removed or corrected if any input or output variables took negative values or if essential inputs (e.g., land) took zero values. The number of missing values in the dataset was very low. The research team interpolated missing values using long-term growth rates of the relevant variables. This is another source of statistical noise.

3.2 Estimation

The research team used both DEA and SFA methods to estimate various measures of efficiency. SFA methods were also used to measure TFP change. This section summarizes the main results. The main drawback of DEA methods is that they do not account for measurement errors and other sources of statistical noise. For this reason, the research team used SFA methods to generate the results reported in Sections 4 and 5.

DEA

DEA estimates of TSME, OSME, and OTE for selected countries in selected years are reported in Table 3.3. The interpretation of the estimates is straightforward. For example, the estimates reported in the first row indicate that Afghanistan was only 33.2% efficient in 1961, and that this was entirely due to output-oriented scale and mix inefficiency, i.e., TSME = OSME × OTE = 0.332 × 1 = 0.332. The summary statistics reported at the bottom of Table 3.3 reveal that this pattern of inefficiency was repeated in most countries in most years.

TABLE 3.3				
Country	MATES Year	TSME	OSME	ΟΤΕ
Afghanistan	1961	0.332	0.332	1.000
Algeria	1961	0.391	0.424	0.921
Angola	1961	0.155	0.155	1.000
Argentina	1961	0.327	0.327	1.000
Australia	1961	0.060	0.060	1.000
Venezuela	1961	0.223	0.229	0.971
Vietnam	1961	0.304	0.304	1.000
Zambia	1961	0.138	0.300	0.461
Zimbabwe	1961	0.372	0.372	1.000
Afghanistan	2015	0.163	0.163	1.000
Algeria	2015	0.488	0.601	0.812
Angola	2015	0.290	0.290	1.000
Argentina	2015	0.511	0.511	1.000
Australia	2015	0.118	0.118	1.000
Venezuela	2015	0.421	0.421	1.000
Vietnam	2015	0.460	0.460	1.000
Zambia	2015	0.176	0.176	1.000
Zimbabwe	2015	0.171	0.298	0.576
Minimum		0.006	0.007	0.317
1st Quartile		0.269	0.318	0.876
Median		0.399	0.448	1.000
Mean		0.427	0.468	0.912
3rd Quartile		0.555	0.604	1.000
Maximum		1.000	1.000	1.000

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 | 19

SFA

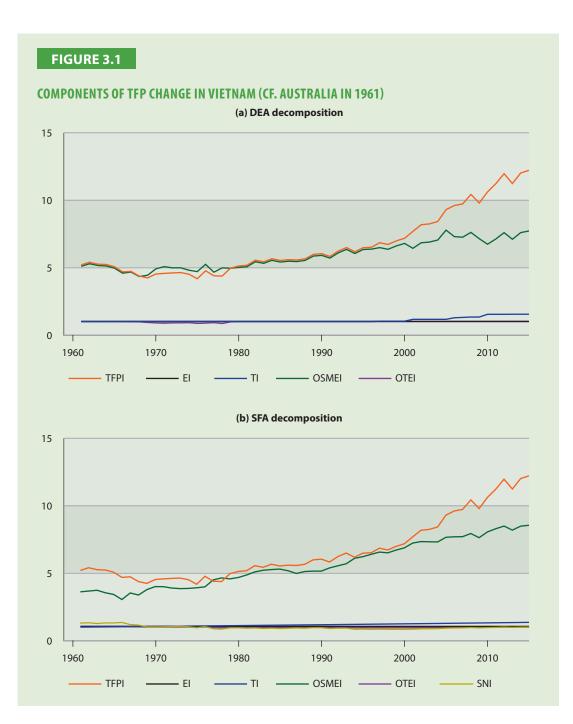
ML estimates of the unknown parameters in equation (2.23) are reported in Table 3.4. These estimates are consistent with prior expectations. The relative magnitudes of the estimated intercept parameters are estimates of relative environmental conditions. The lowest (estimated) intercept is -0.0731 for countries in the dry tropics/subtropics (e.g., Afghanistan, Algeria, and Egypt), and the highest intercept is 0.5824 for countries in the wet tropics/subtropics (e.g., Indonesia and Lao PDR). This indicates that farmers in the dry tropics/subtropics operate in the least favorable production environment, and that farmers in the wet tropics/subtropics operate in the most favorable production environment. The coefficient of the time trend indicates that world agriculture has experienced technical progress at an average annual rate of 0.56%. The coefficients of the log-inputs sum to 0.961, indicating that the production frontier exhibits slightly decreasing returns to scale. The coefficients of the log-normalized outputs indicate that the shadow revenue shares of livestock, crops and greenhouse gas emissions are 0.5103, 0.1084, and 0.3813 respectively. Finally, the estimate of $\gamma = \sigma_u^2 / (\sigma_v^2 + \sigma_u^2)$ reported in Table 3.4 is significantly different from zero at the 1% level. This indicates that there is technical inefficiency in this dataset. Estimates of OTE for selected countries in selected years are reported in Table 3.5.

TABLE 3.4

ML PARAMETER ESTIMATES

Parameter	Variable	Estimate	St. Err.	<i>p</i> -value
α1	Wet temperate	0.5171	0.0313	< 0.0001
α2	Dry temperate	0.5311	0.0316	< 0.0001
<i>α</i> 3	Wet tropical/subtropical	0.5824	0.0295	< 0.0001
0.4	Dry tropical/subtropical	-0.0731	0.0314	0.0201
λ	Time	0.0056	0.0004	< 0.0001
β_1	Land	0.2507	0.0057	< 0.0001
β_2	Labor	0.4123	0.0069	< 0.0001
β_3	Fertilizers	0.1770	0.0050	< 0.0001
β_4	Tractors	0.1215	0.0055	< 0.0001
ξ2	Normalized crops	0.1084	0.0132	< 0.0001
ξ3	Normalized emissions	0.3813	0.0111	< 0.0001
$\sigma^2=\sigma_{_{V}}^2+\sigma_{_{D}}^2$		0.2301	0.0149	< 0.0001
$\gamma=\sigma_{\scriptscriptstyle D}^2/(\sigma_{\scriptscriptstyle V}^2+\sigma_{\scriptscriptstyle D}^2)$		0.4226	0.0692	< 0.0001

TFP


The TFP index used in this project is an additive index. Additive TFP index numbers can be computed using any nonnegative measures of relative value as weights. The ML estimates of ξ_1 and ξ_2 in (2.23) are both positive. These estimates are therefore used as output weights. The estimate of ξ_3 is also positive. However, greenhouse gas emissions are viewed as an undesirable output (equivalently, production of greenhouse gas emissions is regarded as an unproductive activity) and so this output is given a weight of zero. Thus, the output aggregator function used to compute the TFP index in this project is $Q(q_{ij}) = 0.5103q_{1ij} + 0.1084q_{2ij}$. On the input side, the ML estimates of


 β_1, \dots, β_4 reported in Table 3.3 are all positive. These estimates are therefore used as input weights. Thus, the input aggregator function used in this project is $X(x_{it}) = 0.2507x_{1it} + 0.4123x_{2it} + 0.1770x_{3it} + 0.1215x_{4it}$.

DEA and SFA methods were both used to decompose the TFP index into various measures of environment change, technical change, and efficiency change. The DEA results were generally similar to the SFA results. This is illustrated in Figure 3.1, with the panels in this figure comparing TFP and efficiency in Vietnam over the sample period with TFP and efficiency in Australia in 1961. For some countries in Africa and Asia, where the data often appeared to contain large measurement errors, the DEA results sometimes differed from the SFA results. This is illustrated in Figure 3.2, with the panels in this figure comparing TFP and efficiency in Mongolia over the sample period with TFP and efficiency in Mongolia over the sample period with TFP and efficiency in Australia in 1961. The rest of this report focuses on the SFA results. SFA results should generally be preferred over DEA results in the presence of measurement errors and other sources of statistical noise.

TABLE 3.5						
SFA EFFICIENCY ESTIMATES						
Country	Year	ΟΤΕ				
Afghanistan	1961	0.906				
Algeria	1961	0.710				
Angola	1961	0.816				
Argentina	1961	0.904				
Australia	1961	0.803				
Venezuela	1961	0.803				
Vietnam	1961	0.844				
Zambia	1961	0.677				
Zimbabwe	1961	0.768				
Afghanistan	2015	0.796				
Algeria	2015	0.800				
Angola	2015	0.866				
Argentina	2015	0.902				
Australia	2015	0.863				
Venezuela	2015	0.828				
Vietnam	2015	0.803				
Zambia	2015	0.794				
Zimbabwe	2015	0.718				
Minimum		0.343				
1st Quartile		0.764				
Median		0.804				
Mean		0.793				
3rd Quartile		0.834				
Maximum		0.918				

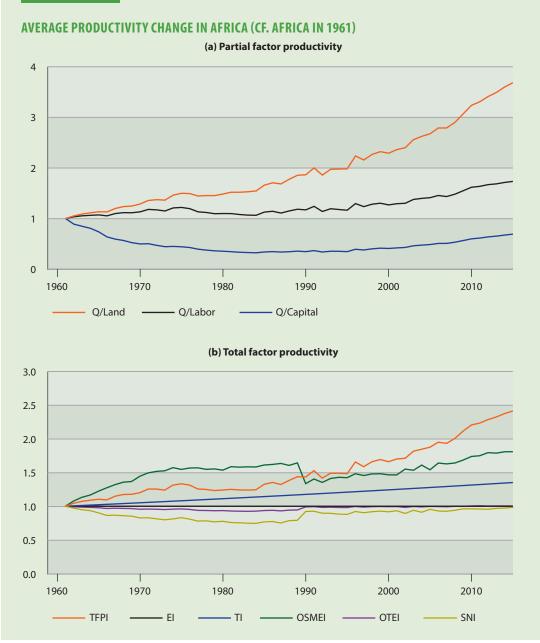
TABLE 3.5

CHAPTER 4 PRODUCTIVITY CHANGE BY REGION

This section reports estimates of average productivity and efficiency changes in Africa, the Americas, Asia, and Europe. The focus is on measures of land, labor, capital, and total factor productivity (TFP) change. The measure of TFP change is the additive TFP index discussed in Section 3.2. The averages reported in this section are calculated as unweighted geometric averages of the country-specific results.

4.1 Africa

Figure 4.1 reports average changes in productivity in Africa from 1961 to 2015. The index numbers used to construct this figure are reported in Table 4.1. Panel (a) in Figure 4.1 indicates that average land productivity increased steadily, and much faster than labor productivity, over the sample period. In 2015, average land (respectively labor) productivity was 3.685 (respectively 1.734) times higher than it had been in 1961. Panel (a) also indicates that average capital productivity fell in the first half of the sample period before recovering slightly in the second half. In 1984 (respectively 2015), average capital productivity was 67.6% (respectively 30.8%) lower than it had been in 1961. Panel (b) in Figure 4.1 indicates that average TFP was 2.414 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.810 \times 1.004 \times 0.983$ = 2.414

This decomposition indicates that, on average, (i) changes in the production environment (the EI component) had no impact on measured TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to an 81% increase in TFP; (iv) changes in technical efficiency (the OTEI component) had a negligible impact on TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) also had a negligible impact on TFP.

4.2 The Americas

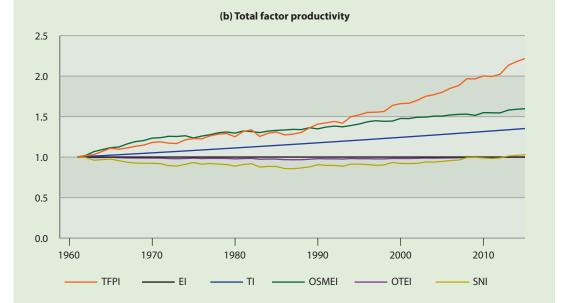
Figure 4.2 reports average changes in productivity in the Americas from 1961 to 2015. The index numbers used to construct this figure are reported in Table 4.2. Panel (a) in Figure 4.2 indicates that average land and labor productivity increased steadily and at almost exactly the same rate over the sample period. In 2015, average land (respectively labor) productivity was 3.290 (respectively 3.281) times higher than it had been in 1961. Panel (a) also indicates that average capital productivity fell in the first half of the sample period before fully recovering in the second half. In 1987 (respectively 2015), average capital productivity was 41.8% lower (respectively 5.3% higher) than it had been in 1961. Panel (b) in Figure 4.2 indicates that average TFP was 2.217 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.597 \times 1.000 \times 1.027$ = 2.217

This decomposition indicates that, on average, (i) changes in the production environment (the EI component) had no impact on measured TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 59.7% increase in TFP; (iv) changes in technical efficiency (the OTEI component) had no impact on TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) had a negligible impact on TFP.

TABLE	E 4.1								
AVERAGE	PRODUCTIVI	TY CHANGE	IN AFRICA	(CF. AFRIC	A IN 1	961)			
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.053	1.035	0.890	1.045	1	1.006	1.077	0.992	0.972
1963	1.089	1.054	0.848	1.072	1	1.011	1.133	0.987	0.949
1964	1.114	1.064	0.807	1.090	1	1.017	1.166	0.983	0.935
1965	1.134	1.072	0.738	1.104	1	1.023	1.223	0.978	0.902
1966	1.132	1.053	0.638	1.094	1	1.028	1.274	0.967	0.864
1967	1.199	1.099	0.594	1.148	1	1.034	1.321	0.970	0.867
1968	1.237	1.117	0.566	1.174	1	1.040	1.357	0.968	0.860
1969	1.247	1.115	0.523	1.177	1	1.046	1.368	0.966	0.853
1970	1.288	1.132	0.499	1.201	1	1.052	1.446	0.956	0.827
1971	1.358	1.181	0.503	1.255	1	1.057	1.495	0.958	0.828
1972	1.373	1.172	0.471	1.255	1	1.063	1.518	0.956	0.814
1973	1.364	1.150	0.444	1.240	1	1.069	1.526	0.951	0.799
1974	1.463	1.210	0.449	1.314	1	1.075	1.573	0.957	0.812
1975	1.500	1.220	0.442	1.333	1	1.081	1.547	0.960	0.830
1976	1.493	1.195	0.427	1.314	1	1.087	1.568	0.953	0.809
1977	1.445	1.132	0.395	1.255	1	1.093	1.570	0.938	0.779
1978	1.454	1.120	0.376	1.250	1	1.100	1.548	0.937	0.784
1979	1.454	1.096	0.362	1.233	1	1.106	1.554	0.934	0.768
1980	1.486	1.099	0.354	1.241	1	1.112	1.536	0.935	0.777
1981	1.520	1.098	0.345	1.251	1	1.118	1.587	0.929	0.758
1982	1.520	1.080	0.334	1.242	1	1.124	1.580	0.926	0.755
1983	1.530	1.068	0.328	1.240	1	1.131	1.585	0.925	0.748
1984	1.545	1.065	0.324	1.245	1	1.137	1.583	0.927	0.746
1985	1.661	1.128	0.339	1.326	1	1.143	1.612	0.936	0.768
1986	1.706	1.144	0.347	1.354	1	1.150	1.621	0.939	0.773
1987	1.684	1.109	0.338	1.323	1	1.156	1.636	0.931	0.751
1988	1.777	1.150	0.345	1.383	1	1.163	1.606	0.942	0.786
1989	1.856	1.184	0.356	1.438	1	1.169	1.644	0.945	0.792
1990	1.865	1.172	0.346	1.434	1	1.176	1.335	0.990	0.922
1991	2.000	1.241	0.366	1.528	1	1.182	1.405	0.994	0.926
1992	1.859	1.140	0.339	1.418	1	1.189	1.354	0.982	0.897
1993	1.974	1.194	0.354	1.489	1	1.196	1.412	0.985	0.895
1994	1.978	1.179	0.353	1.490	1	1.202	1.430	0.982	0.883
1995	1.982	1.165	0.346	1.483	1	1.209	1.424	0.980	0.879
1996	2.238	1.296	0.393	1.657	1	1.216	1.483	0.997	0.922
1997	2.157	1.235	0.379	1.587	1	1.223	1.456	0.987	0.904
1998	2.267	1.283	0.401	1.661	1	1.229	1.479	0.993	0.919
1999	2.322	1.303	0.415	1.693	1	1.236	1.483	0.996	0.927
2000	2.291	1.270	0.409	1.661	1	1.243	1.466	0.993	0.918
2001	2.363	1.294	0.420	1.702	1	1.250	1.466	0.995	0.933
2002	2.399	1.302	0.429	1.712	1	1.257	1.551	0.983	0.893
2003	2.560	1.378	0.462	1.817	1	1.264	1.534	0.996	0.940
2004	2.625	1.399	0.475	1.846	1	1.271	1.611	0.990	0.911
2005	2.676	1.413	0.486	1.877	1	1.278	1.541	0.998	0.955
2006	2.790	1.456	0.509	1.951	1	1.286	1.641	0.995	0.929
2007	2.790	1.435	0.509	1.933	1	1.293	1.629	0.992	0.925

Continued on next page


Continued from previous page

Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
2008	2.900	1.482	0.533	2.006	1	1.300	1.642	1.000	0.940
2009	3.069	1.550	0.565	2.116	1	1.307	1.686	0.999	0.961
2010	3.237	1.619	0.599	2.207	1	1.315	1.739	1.004	0.961
2011	3.307	1.637	0.615	2.234	1	1.322	1.750	1.007	0.959
2012	3.410	1.670	0.637	2.286	1	1.329	1.796	1.003	0.955
2013	3.491	1.685	0.652	2.325	1	1.337	1.788	1.004	0.968
2014	3.599	1.714	0.673	2.376	1	1.344	1.809	1.004	0.973
2015	3.685	1.734	0.692	2.414	1	1.352	1.810	1.004	0.983

FIGURE 4.2

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 27

Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	ті	OSMEI	ΟΤΕΙ	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.035	1.030	0.958	1.019	1	1.006	1.021	0.999	0.993
1963	1.067	1.056	0.925	1.030	1	1.011	1.067	0.994	0.96
1964	1.109	1.102	0.917	1.069	1	1.017	1.092	0.994	0.968
1965	1.160	1.144	0.895	1.110	1	1.023	1.116	0.997	0.97
1966	1.171	1.148	0.852	1.096	1	1.028	1.124	0.993	0.95
1967	1.201	1.169	0.803	1.113	1	1.034	1.162	0.989	0.93
1968	1.250	1.212	0.796	1.133	1	1.040	1.191	0.988	0.92
1969	1.274	1.232	0.764	1.147	1	1.046	1.204	0.988	0.92
1970	1.320	1.273	0.755	1.180	1	1.052	1.233	0.987	0.92
1971	1.329	1.282	0.734	1.188	1	1.057	1.239	0.987	0.91
1972	1.315	1.270	0.711	1.171	1	1.063	1.256	0.982	0.89
1973	1.335	1.290	0.692	1.167	1	1.069	1.254	0.979	0.88
1974	1.391	1.338	0.700	1.212	1	1.075	1.263	0.982	0.90
1975	1.404	1.351	0.672	1.228	1	1.081	1.235	0.987	0.93
1976	1.424	1.373	0.668	1.224	1	1.087	1.259	0.981	0.91
1977	1.483	1.436	0.669	1.262	1	1.093	1.275	0.984	0.92
1978	1.520	1.466	0.663	1.282	1	1.100	1.300	0.983	0.91
1979	1.532	1.477	0.647	1.291	1	1.106	1.309	0.983	0.90
1980	1.493	1.440	0.621	1.250	1	1.112	1.296	0.978	0.88
1981	1.573	1.520	0.631	1.315	1	1.118	1.321	0.981	0.90
1982	1.580	1.530	0.626	1.336	1	1.124	1.315	0.984	0.91
1983	1.498	1.451	0.586	1.254	1	1.131	1.302	0.973	0.87
1984	1.556	1.524	0.607	1.295	1	1.137	1.321	0.975	0.88
1985	1.583	1.550	0.605	1.309	1	1.143	1.329	0.975	0.88
1986	1.567	1.540	0.583	1.274	1	1.150	1.334	0.968	0.85
1987	1.601	1.572	0.582	1.283	1	1.156	1.342	0.967	0.85
1988	1.627	1.602	0.587	1.303	1	1.163	1.339	0.967	0.86
1989	1.689	1.659	0.603	1.360	1	1.169	1.362	0.973	0.87
1990	1.732	1.707	0.617	1.407	1	1.176	1.348	0.980	0.90
1991	1.742	1.714	0.614	1.422	1	1.182	1.370	0.978	0.89
1992	1.769	1.736	0.614	1.440	1	1.189	1.382	0.978	0.89
1993	1.743	1.716	0.605	1.418	1	1.196	1.374	0.975	0.88
1994	1.839	1.800	0.633	1.498	1	1.202	1.390	0.982	0.91
1995	1.891	1.858	0.650	1.520	1	1.209	1.408	0.979	0.91

Continued on next page

Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	TI	OSMEI	ΟΤΕΙ	SNI
1997	2.018	1.995	0.685	1.554	1	1.223	1.449	0.977	0.898
1998	2.021	2.007	0.683	1.562	1	1.229	1.441	0.977	0.902
1999	2.115	2.107	0.713	1.637	1	1.236	1.445	0.983	0.933
2000	2.157	2.144	0.718	1.660	1	1.243	1.477	0.982	0.921
2001	2.180	2.165	0.722	1.665	1	1.250	1.475	0.982	0.919
2002	2.194	2.179	0.725	1.700	1	1.257	1.492	0.984	0.921
2003	2.302	2.299	0.765	1.749	1	1.264	1.492	0.987	0.939
2004	2.373	2.378	0.789	1.770	1	1.271	1.505	0.986	0.938
2005	2.431	2.436	0.807	1.800	1	1.278	1.505	0.988	0.947
2006	2.514	2.502	0.827	1.850	1	1.286	1.520	0.990	0.957
2007	2.608	2.606	0.859	1.883	1	1.293	1.527	0.991	0.962
2008	2.671	2.671	0.877	1.967	1	1.300	1.529	0.997	0.992
2009	2.637	2.639	0.864	1.966	1	1.307	1.515	0.998	0.995
2010	2.758	2.759	0.901	2.002	1	1.315	1.549	0.995	0.989
2011	2.852	2.850	0.927	1.995	1	1.322	1.547	0.993	0.982
2012	2.872	2.888	0.937	2.023	1	1.329	1.545	0.995	0.989
2013	3.048	3.075	0.994	2.134	1	1.337	1.581	0.998	1.012
2014	3.184	3.178	1.024	2.179	1	1.344	1.590	0.999	1.021
2015	3.290	3.281	1.053	2.217	1	1.352	1.597	1.000	1.027

Continued from previous page

4.3 Asia

Figure 4.3 reports average changes in measured productivity in Asia from 1961 to 2015. The index numbers used to construct this figure are reported in Table 4.3. Panel (a) in Figure 4.3 indicates that average land productivity increased steadily, and somewhat faster than labor productivity, over the sample period. In 2015, the measure of average land (respectively labor) productivity was 3.442 (respectively 2.507) times higher than it had been in 1961. Panel (a) also indicates that average capital productivity fell in the first half of the sample period and remained relatively low. In 2015, the measure of average capital productivity was 77.9% lower than it had been in 1961. Panel (b) in Figure 4.3 indicates that average TFP was almost twice as high in 2015 as it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$

 $= 1 \times 1.352 \times 1.781 \times 0.991 \times 0.835$

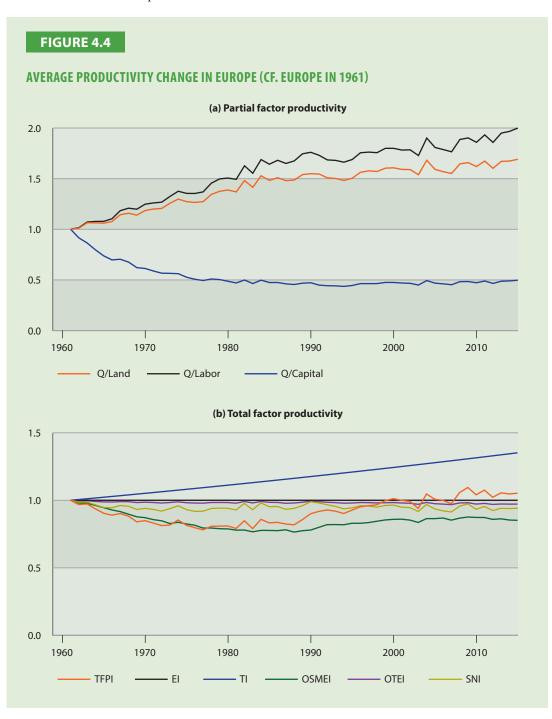
= 1.992

This decomposition indicates that, on average, (i) changes in the production environment (the EI component) had no impact on measured TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 78.1% increase in TFP; (iv) changes in technical efficiency (the OTEI component) had a negligible impact on TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) led to a 16.5% fall in measured TFP.

TA BLE 4.3

AVERAGE PRODUCTIVITY CHANGE IN ASIA (CF. ASIA IN 1961)

Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.042	1.029	0.895	1.028	1	1.006	1.011	1.006	1.005
1963	1.054	1.038	0.795	1.030	1	1.011	1.045	1.001	0.974
1964	1.112	1.086	0.774	1.074	1	1.017	1.067	1.005	0.986
1965	1.118	1.081	0.704	1.067	1	1.023	1.095	0.999	0.954
1966	1.135	1.084	0.635	1.067	1	1.028	1.161	0.990	0.902
1967	1.176	1.115	0.594	1.090	1	1.034	1.220	0.987	0.876


Continued on next page

Continued from previous page

N	0//	0/1-1	0.15	-			0.01171	077	C 141
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1968	1.224	1.150	0.529	1.115	1	1.040	1.272	0.981	0.859
1969	1.251	1.163	0.470	1.132	1	1.046	1.267	0.996	0.858
1970	1.273	1.176	0.460	1.139	1	1.052	1.258	0.996	0.864
1971	1.300	1.174	0.415	1.136	1	1.057	1.293	0.992	0.837
1972	1.309	1.179	0.393	1.130	1	1.063	1.340	0.983	0.807
1973	1.314	1.178	0.369	1.119	1	1.069	1.334	0.982	0.799
1974	1.343	1.198	0.350	1.137	1	1.075	1.349	0.983	0.797
1975	1.402	1.227	0.333	1.157	1	1.081	1.358	0.985	0.800
1976	1.453	1.260	0.325	1.181	1	1.087	1.403	0.980	0.790
1977	1.464	1.262	0.290	1.168	1	1.093	1.428	0.974	0.768
1978	1.515	1.300	0.273	1.185	1	1.100	1.451	0.972	0.764
1979	1.513	1.289	0.252	1.171	1	1.106	1.461	0.967	0.750
1980	1.589	1.346	0.246	1.216	1	1.112	1.519	0.967	0.744
1981	1.641	1.383	0.236	1.250	1	1.118	1.552	0.967	0.745
1982	1.688	1.409	0.230	1.269	1	1.124	1.533	0.971	0.758
1983	1.753	1.448	0.226	1.289	1	1.131	1.549	0.973	0.756
1984	1.770	1.451	0.215	1.279	1	1.137	1.563	0.968	0.743
1985	1.830	1.501	0.217	1.319	1	1.143	1.591	0.970	0.748
1986	1.849	1.515	0.212	1.323	1	1.150	1.602	0.968	0.742
1987	1.805	1.483	0.201	1.283	1	1.156	1.583	0.962	0.729
1988	1.867	1.532	0.199	1.315	1	1.163	1.585	0.966	0.739
1989	1.895	1.544	0.194	1.319	1	1.169	1.591	0.964	0.736
1990	1.968	1.586	0.193	1.354	1	1.176	1.535	0.975	0.769
1991	1.954	1.554	0.185	1.334	1	1.182	1.558	0.968	0.747
1992	2.029	1.585	0.187	1.356	1	1.189	1.569	0.968	0.750
1993	2.078	1.602	0.185	1.366	1	1.196	1.551	0.973	0.757
1994	2.101	1.598	0.176	1.365	1	1.202	1.556	0.972	0.751
1995	2.184	1.639	0.177	1.406	1	1.209	1.596	0.969	0.751
1996	2.255	1.675	0.178	1.433	1	1.216	1.594	0.970	0.762
1997	2.265	1.670	0.173	1.416	1	1.223	1.608	0.965	0.747
1998	2.328	1.706	0.175	1.440	1	1.229	1.611	0.967	0.752
1999	2.403	1.750	0.175	1.476	1	1.236	1.631	0.967	0.757
2000	2.450	1.779	0.174	1.508	1	1.243	1.654	0.967	0.758
2001	2.471	1.792	0.176	1.516	1	1.250	1.662	0.966	0.755
2002	2.560	1.838	0.179	1.547	1	1.257	1.706	0.964	0.749
2003	2.619	1.869	0.180	1.551	1	1.264	1.695	0.965	0.750
2004	2.675	1.910	0.182	1.594	1	1.271	1.698	0.968	0.763
2005	2.804	1.993	0.188	1.648	1	1.278	1.693	0.973	0.782
2006	2.860	2.023	0.189	1.673	1	1.286	1.696	0.975	0.787
2007	2.915	2.063	0.191	1.694	1	1.293	1.685	0.977	0.796
2008	2.990	2.122	0.196	1.756	1	1.300	1.694	0.981	0.813
2009	3.087	2.192	0.201	1.834	1	1.307	1.746	0.984	0.816
2010	3.099	2.209	0.201	1.835	1	1.315	1.749	0.983	0.812
2011	3.214	2.305	0.208	1.899	1	1.322	1.769	0.987	0.823
2012	3.316	2.386	0.213	1.948	1	1.329	1.776	0.989	0.834
2013	3.321	2.400	0.214	1.950	1	1.337	1.787	0.987	0.827
2014	3.380	2.451	0.217	1.966	1	1.344	1.778	0.990	0.831
2015	3.442	2.507	0.221	1.992	1	1.352	1.781	0.991	0.835

4.4 Europe

Figure 4.4 reports average changes in productivity in Europe from 1961 to 2015. The index numbers used to construct this figure are reported in Table 4.4. Panel (a) in Figure 4.4 indicates that average land productivity increased steadily, but at a slightly lower rate than average labor productivity, over the sample period. In 2015, average land (respectively labor) productivity was 1.692 (respectively 2.001) times higher than it had been in 1961. Panel (a) also indicates that average capital productivity fell in the first half of the sample period and remained relatively low. In 2015, average capital productivity was only half of what it had been in 1961. Panel (b) in Figure 4.4 indicates that average TFP was only 5.2% higher in 2015 than it had been in 1961. This very modest increase is decomposed as follows:

32 | AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$

 $= 1 \times 1.352 \times 0.851 \times 0.972 \times 0.941$ = 1.052

This decomposition indicates that, on average, (i) changes in the production environment (the EI component) had no impact on measured TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) a fall in scale and mix efficiency (the OSMEI component) led to a 14.9% fall in TFP; (iv) changes in technical efficiency (the OTEI component) led to a 2.8% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) led to a 5.9% fall in TFP.

TABLE 4.4

AVERAGE PRODUCTIVITY	CHANGE IN EUROPE	(CF. EUROPE IN 1961)
	CHANGE IN FOUCH F	

1961 1962 1963 1964 1965 1966	1 1.009 1.063 1.063 1.059	1 1.014 1.071 1.077	1 0.914 0.864	1 0.968	1 1	1	1	1	1
1963 1964 1965	1.063 1.063	1.071			1				
1964 1965	1.063		0.864	0.072		1.006	0.981	0.996	0.986
1965		1.077		0.973	1	1.011	0.978	0.997	0.986
	1.059		0.796	0.936	1	1.017	0.962	0.991	0.966
1066		1.077	0.736	0.904	1	1.023	0.945	0.988	0.947
1900	1.075	1.103	0.696	0.890	1	1.028	0.928	0.987	0.944
1967	1.143	1.183	0.702	0.902	1	1.034	0.916	0.990	0.961
1968	1.158	1.208	0.674	0.882	1	1.040	0.897	0.990	0.956
1969	1.139	1.198	0.619	0.841	1	1.046	0.878	0.983	0.932
1970	1.184	1.247	0.611	0.849	1	1.052	0.871	0.986	0.940
1971	1.199	1.260	0.586	0.831	1	1.057	0.857	0.983	0.932
1972	1.205	1.267	0.564	0.812	1	1.063	0.848	0.980	0.920
1973	1.257	1.324	0.563	0.816	1	1.069	0.828	0.984	0.938
1974	1.298	1.376	0.559	0.854	1	1.075	0.837	0.989	0.960
1975	1.273	1.354	0.524	0.815	1	1.081	0.825	0.982	0.931
1976	1.264	1.354	0.504	0.797	1	1.087	0.815	0.979	0.918
1977	1.273	1.369	0.492	0.781	1	1.093	0.794	0.979	0.919
1978	1.344	1.456	0.507	0.807	1	1.100	0.794	0.983	0.939
1979	1.375	1.498	0.501	0.809	1	1.106	0.789	0.984	0.942
1980	1.388	1.506	0.484	0.810	1	1.112	0.788	0.983	0.940
1981	1.369	1.493	0.467	0.791	1	1.118	0.779	0.978	0.928
1982	1.481	1.627	0.497	0.848	1	1.124	0.779	0.991	0.977
1983	1.414	1.554	0.462	0.790	1	1.131	0.766	0.980	0.930
1984	1.529	1.689	0.495	0.859	1	1.137	0.777	0.992	0.980
1985	1.482	1.643	0.472	0.833	1	1.143	0.777	0.985	0.952
1986	1.510	1.682	0.472	0.836	1	1.150	0.775	0.984	0.954
1987	1.480	1.651	0.459	0.824	1	1.156	0.781	0.978	0.933
1988	1.486	1.675	0.452	0.818	1	1.163	0.764	0.980	0.940
1989	1.540	1.746	0.465	0.856	1	1.169	0.775	0.985	0.960
1990	1.549	1.761	0.470	0.900	1	1.176	0.779	0.994	0.989
1991	1.546	1.732	0.446	0.918	1	1.182	0.800	0.990	0.980

Continued on next page

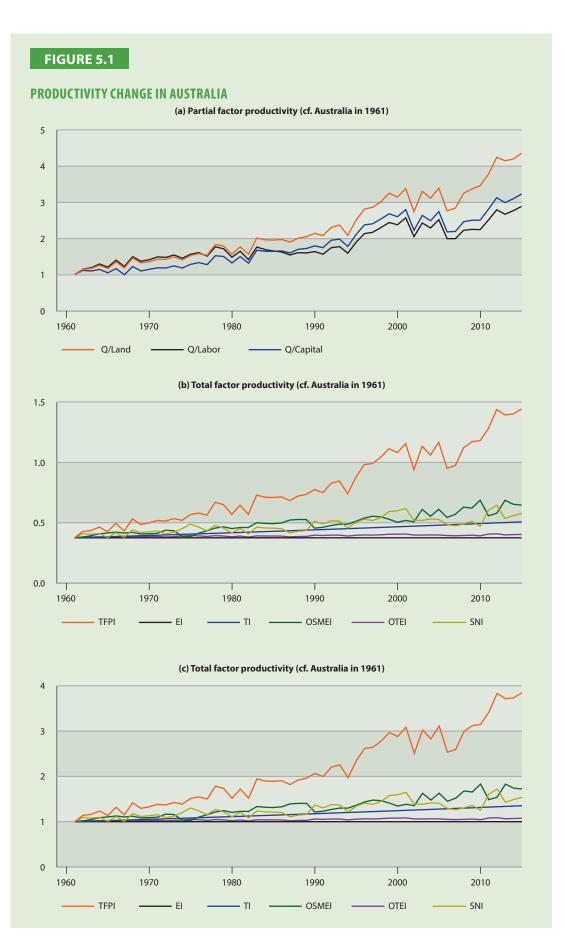
Continued from previous page

19921.5091.6860.4400.92811.1890.8190.9850.96519931.5021.6810.4390.92011.1960.8200.9830.95319941.4821.6630.4330.90211.2020.8190.9780.93319951.5051.6890.4420.92711.2090.8300.9800.94319961.5631.7570.4610.95111.2160.8290.9830.96619971.5771.7630.4610.96011.2230.8350.9820.95719981.5711.7570.4610.96611.2290.8450.9800.94319991.6041.8000.4730.99711.2360.8540.9820.96720001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94420021.5901.7850.4640.99211.2570.8530.9780.94420041.6831.9020.4470.94011.2640.8640.9750.93220051.5911.8090.4661.00811.2780.8640.9750.93220061.5691.7880.4591.00011.2860.8680.9710.92220071	Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	TI	OSMEI	OTEI	SNI
19931.5021.6810.4390.92011.1960.8200.9830.95319941.4821.6630.4330.90211.2020.8190.9780.93319951.5051.6890.4420.92711.2090.8300.9800.94319961.5631.7570.4610.95111.2160.8290.9830.96019971.5771.7630.4610.96011.2230.8350.9820.95319981.5711.7570.4610.96611.2290.8450.9800.94319991.6041.8000.4730.99711.2360.8540.9820.96620001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94320021.5901.7850.4640.99211.2570.8530.9780.94420031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2780.8640.9750.93620051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9110.92520061										
19941.4821.6630.4330.90211.2020.8190.9780.93319951.5051.6890.4420.92711.2090.8300.9800.94319961.5631.7570.4610.95111.2160.8290.9830.96619971.5771.7630.4610.96011.2230.8350.9820.95319981.5711.7570.4610.96611.2290.8450.9800.94319991.6041.8000.4730.99711.2360.8540.9820.96720001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94320021.5901.7850.4640.99211.2570.8530.9780.94320031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96320051.5911.8090.4661.00811.2860.8680.9710.92220061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2030.8530.9680.97420081										
19951.5051.6890.4420.92711.2090.8300.9800.94319961.5631.7570.4610.95111.2160.8290.9830.96019971.5771.7630.4610.96011.2230.8350.9820.94319981.5711.7570.4610.96611.2290.8450.9800.94319991.6041.8000.4730.99711.2360.8540.9820.96320001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94420021.5901.7850.4640.99211.2570.8530.9780.94420031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92720071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091										
19961.5631.7570.4610.95111.2160.8290.9830.96019971.5771.7630.4610.96011.2230.8350.9820.95319981.5711.7570.4610.96611.2290.8450.9800.94319991.6041.8000.4730.99711.2360.8540.9820.96720001.6071.8000.4731.01211.2430.8590.9830.96720011.5921.7830.4670.99911.2500.8600.9800.94320021.5901.7850.4640.99211.2570.8530.9780.94620031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2780.8640.9750.93620051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92720071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933										
19971.5771.7630.4610.96011.2230.8350.9820.95719981.5711.7570.4610.96611.2290.8450.9800.94919991.6041.8000.4730.99711.2360.8540.9820.96720001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94920021.5901.7850.4640.99211.2570.8530.9780.94620031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2860.8680.9710.92720061.5691.7880.4591.00011.2860.8680.9710.92720071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933										
19981.5711.7570.4610.96611.2290.8450.9800.94919991.6041.8000.4730.99711.2360.8540.9820.96320001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94920021.5901.7850.4640.99211.2570.8530.9780.94620031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8730.9720.93320101.6201.8600.4701.04011.3150.8730.9720.933										
19991.6041.8000.4730.99711.2360.8540.9820.96720001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94420021.5901.7850.4640.99211.2570.8530.9780.94420031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933										
20001.6071.8000.4731.01211.2430.8590.9830.96420011.5921.7830.4670.99911.2500.8600.9800.94920021.5901.7850.4640.99211.2570.8530.9780.94620031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933										
20011.5921.7830.4670.99911.2500.8600.9800.94920021.5901.7850.4640.99211.2570.8530.9780.94620031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933										
20021.5901.7850.4640.99211.2570.8530.9780.94620031.5391.7290.4470.94011.2640.8360.9700.91720041.6831.9020.4911.04711.2710.8640.9840.96820051.5911.8090.4661.00811.2780.8640.9750.93620061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933						1				
2003 1.539 1.729 0.447 0.940 1 1.264 0.836 0.970 0.917 2004 1.683 1.902 0.491 1.047 1 1.271 0.864 0.984 0.968 2005 1.591 1.809 0.466 1.008 1 1.278 0.864 0.975 0.936 2006 1.569 1.788 0.459 1.000 1 1.286 0.868 0.971 0.922 2007 1.551 1.766 0.450 0.974 1 1.293 0.853 0.968 0.913 2008 1.646 1.888 0.480 1.057 1 1.300 0.868 0.980 0.956 2009 1.659 1.903 0.482 1.095 1 1.307 0.876 0.982 0.974 2010 1.620 1.860 0.470 1.040 1 1.315 0.873 0.972 0.933	2001	1.592	1.783	0.467	0.999	1	1.250	0.860	0.980	0.949
2004 1.683 1.902 0.491 1.047 1 1.271 0.864 0.984 0.968 2005 1.591 1.809 0.466 1.008 1 1.278 0.864 0.975 0.936 2006 1.569 1.788 0.459 1.000 1 1.286 0.868 0.971 0.922 2007 1.551 1.766 0.450 0.974 1 1.293 0.853 0.968 0.913 2008 1.646 1.888 0.480 1.057 1 1.300 0.868 0.980 0.956 2009 1.659 1.903 0.482 1.095 1 1.307 0.876 0.982 0.974 2010 1.620 1.860 0.470 1.040 1 1.315 0.873 0.972 0.933	2002	1.590	1.785	0.464	0.992	1	1.257	0.853	0.978	0.946
2005 1.591 1.809 0.466 1.008 1 1.278 0.864 0.975 0.936 2006 1.569 1.788 0.459 1.000 1 1.286 0.868 0.971 0.922 2007 1.551 1.766 0.450 0.974 1 1.293 0.853 0.968 0.913 2008 1.646 1.888 0.480 1.057 1 1.300 0.868 0.980 0.956 2009 1.659 1.903 0.482 1.095 1 1.307 0.876 0.982 0.974 2010 1.620 1.860 0.470 1.040 1 1.315 0.873 0.972 0.933	2003	1.539	1.729	0.447	0.940	1	1.264	0.836	0.970	0.917
20061.5691.7880.4591.00011.2860.8680.9710.92220071.5511.7660.4500.97411.2930.8530.9680.91320081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933	2004	1.683	1.902	0.491	1.047	1	1.271	0.864	0.984	0.968
2007 1.551 1.766 0.450 0.974 1 1.293 0.853 0.968 0.913 2008 1.646 1.888 0.480 1.057 1 1.300 0.868 0.980 0.956 2009 1.659 1.903 0.482 1.095 1 1.307 0.876 0.982 0.974 2010 1.620 1.860 0.470 1.040 1 1.315 0.873 0.972 0.933	2005	1.591	1.809	0.466	1.008	1	1.278	0.864	0.975	0.936
20081.6461.8880.4801.05711.3000.8680.9800.95620091.6591.9030.4821.09511.3070.8760.9820.97420101.6201.8600.4701.04011.3150.8730.9720.933	2006	1.569	1.788	0.459	1.000	1	1.286	0.868	0.971	0.922
2009 1.659 1.903 0.482 1.095 1 1.307 0.876 0.982 0.974 2010 1.620 1.860 0.470 1.040 1 1.315 0.873 0.972 0.933	2007	1.551	1.766	0.450	0.974	1	1.293	0.853	0.968	0.913
2010 1.620 1.860 0.470 1.040 1 1.315 0.873 0.972 0.933	2008	1.646	1.888	0.480	1.057	1	1.300	0.868	0.980	0.956
	2009	1.659	1.903	0.482	1.095	1	1.307	0.876	0.982	0.974
2011 1.674 1.933 0.487 1.075 1 1.322 0.872 0.977 0.954	2010	1.620	1.860	0.470	1.040	1	1.315	0.873	0.972	0.933
	2011	1.674	1.933	0.487	1.075	1	1.322	0.872	0.977	0.954
2012 1.602 1.859 0.463 1.022 1 1.329 0.858 0.969 0.924	2012	1.602	1.859	0.463	1.022	1	1.329	0.858	0.969	0.924
2013 1.671 1.951 0.485 1.055 1 1.337 0.863 0.972 0.940	2013	1.671	1.951	0.485	1.055	1	1.337	0.863	0.972	0.940
2014 1.675 1.968 0.488 1.047 1 1.344 0.854 0.972 0.939	2014	1.675	1.968	0.488	1.047	1	1.344	0.854	0.972	0.939
2015 1.692 2.001 0.495 1.052 1 1.352 0.851 0.972 0.94	2015	1.692	2.001	0.495	1.052	1	1.352	0.851	0.972	0.941

CHAPTER 5 PRODUCTIVITY CHANGE BY COUNTRY

This section reports estimates of productivity and efficiency changes in a total of 23 countries, namely, Australia, PR China, France, Germany, the UK, the USA, and 17 APO member countries. Again, the focus is on measures of land, labor, capital, and total factor productivity (TFP) change.

5.1 Australia


Australia is a major producer of livestock and crop products for both the domestic and export markets. In 2014, the agriculture sector employed 3.7% (respectively 1.8%) of the male (respectively female) labor force and contributed 2.3% of GDP. The beef industry is the largest agricultural activity by value. Wheat is the major cereal in terms of area and value. Major problems facing Australian agriculture include water security and low soil fertility. Figure 5.1 reports estimated changes in agricultural productivity in Australia from 1961 to 2015. The index numbers used to construct this figure are reported in Table 5.1.

Panel (a) in Figure 5.1 indicates that land productivity increased at a slightly faster rate than labor and capital productivity over the sample period. In 2015, output per unit of land was 4.356 times higher than it had been in 1961; on the other hand, output per unit of labor (respectively capital) was only 2.885 (respectively 3.229) times higher than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by 33.5% (respectively 19.3%) while the area of land used for agricultural production fell by 11.6%.

Panel (b) in Figure 5.1 indicates that TFP in Australian agriculture was 3.846 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.722 \times 1.075 \times 1.537$ = 3.846.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 72.2% increase in TFP; (iv) improvements in technical efficiency (the OTEI component) led to a 7.5% increase in TFP; and (v) changes in statistical noise (the SNI component) accounted for a 53.7% increase in measured TFP. In case of Australia, an important source of statistical noise is omitted variables (e.g., rainfall and temperature).

		GE IN AUSTI							
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	TI	OSMEI	OTEI	SNI
961	1 1 2 0	1 1.148	1 1.114	1 120	1 1	1 006	1 1.015	1 1.019	1.00
962	1.139			1.139		1.006			1.09
963 964	1.168 1.258	1.189 1.290	1.099 1.142	1.161 1.236	1 1	1.011 1.017	1.047 1.087	1.016 1.020	1.07 1.09
904 965	1.164	1.290	1.047	1.137	1	1.017	1.106	1.020	1.09
966	1.352	1.399	1.166	1.318	1	1.023	1.125	1.023	1.11
967	1.181	1.223	0.994	1.150	1	1.020	1.105	1.025	1.00
968	1.456	1.495	1.222	1.417	1	1.040	1.120	1.033	1.17
969	1.322	1.366	1.098	1.293	1	1.046	1.084	1.023	1.11
970	1.356	1.410	1.144	1.329	1	1.052	1.090	1.026	1.13
971	1.419	1.487	1.184	1.383	1	1.057	1.099	1.030	1.15
972	1.419	1.475	1.181	1.371	1	1.063	1.166	1.018	1.08
973	1.487	1.541	1.239	1.424	1	1.069	1.158	1.025	1.12
974	1.408	1.451	1.181	1.386	1	1.075	1.034	1.037	1.20
975	1.528	1.561	1.282	1.514	1	1.081	1.024	1.051	1.30
976	1.578	1.606	1.330	1.546	1	1.087	1.102	1.042	1.23
977	1.535	1.510	1.274	1.500	1	1.093	1.154	1.030	1.15
978	1.835	1.770	1.521	1.785	1	1.100	1.215	1.047	1.27
979	1.787	1.711	1.498	1.732	1	1.106	1.242	1.039	1.21
980	1.564	1.480	1.321	1.516	1	1.112	1.204	1.022	1.10
981	1.767	1.644	1.497	1.720	1	1.118	1.228	1.038	1.20
982	1.560	1.413	1.313	1.518	1	1.124	1.227	1.017	1.08
983	2.010	1.760	1.672	1.944	1	1.131	1.334	1.042	1.23
984	1.960	1.691	1.642	1.896	1	1.137	1.318	1.039	1.21
985	1.954	1.652	1.642	1.890	1	1.143	1.313	1.039	1.21
986	1.970	1.626	1.653	1.905	1	1.150	1.328	1.037	1.20
987	1.899	1.541	1.599	1.819	1	1.156	1.392	1.022	1.10
988	2.005	1.605	1.698	1.922	1	1.163	1.404	1.028	1.14
989	2.048	1.596	1.721	1.960	1	1.169	1.403	1.031	1.15
990	2.140	1.635	1.794	2.066	1	1.176	1.213	1.059	1.36
991	2.079	1.562	1.742	1.997	1	1.182	1.232	1.051	1.30
992	2.303	1.742	1.950	2.204	1	1.189	1.270	1.060	1.37
993	2.370	1.773	1.981	2.255	1	1.196	1.300	1.059	1.37
994	2.085 2.504	1.592	1.776	1.971	1	1.202 1.209	1.299	1.039	1.21
995 996	2.304	1.891 2.132	2.107 2.373	2.342 2.617	1 1	1.209	1.365 1.435	1.056 1.063	1.34 1.41
990 997	2.808	2.132	2.373	2.642	1	1.210	1.435	1.060	1.38
998	3.012	2.108	2.403	2.782	1	1.229	1.464	1.067	1.44
999	3.253	2.439	2.680	2.968	1	1.236	1.410	1.078	1.57
000	3.142	2.377	2.600	2.882	1	1.243	1.344	1.080	1.59
001	3.378	2.569	2.796	3.084	1	1.250	1.383	1.084	1.64
2002	2.739	2.047	2.224	2.507	1	1.257	1.354	1.061	1.38
2003	3.301	2.426	2.635	3.024	1	1.264	1.627	1.061	1.38
2004	3.113	2.289	2.488	2.826	1	1.271	1.477	1.064	1.41
005	3.391	2.516	2.741	3.111	1	1.278	1.628	1.063	1.40
2006	2.761	1.993	2.181	2.535	1	1.286	1.450	1.050	1.29
2007	2.836	1.993	2.191	2.595	1	1.293	1.519	1.046	1.26
2008	3.249	2.225	2.462	2.992	1	1.300	1.678	1.051	1.30
2009	3.368	2.248	2.502	3.122	1	1.307	1.656	1.058	1.36
2010	3.460	2.243	2.505	3.147	1	1.315	1.831	1.044	1.25
2011	3.776	2.510	2.809	3.417	1	1.322	1.486	1.081	1.60
2012	4.244	2.790	3.125	3.833	1	1.329	1.541	1.089	1.71
013	4.149	2.668	2.989	3.715	1	1.337	1.828	1.065	1.42
2014	4.196	2.765	3.096	3.737	1	1.344	1.741	1.071	1.49
015	4.356	2.885	3.229	3.846	1	1.352	1.722	1.075	1.53

5.2 Bangladesh

Bangladesh is one of the world's largest producers of rice (ranked 4th), fish (5th), jute (2nd), tea (10th) and tropical fruits (5th). In 2014, the agriculture sector employed 34.9% (respectively 61.7%) of the male (respectively female) labor force and contributed 15.4% to the GDP. Most land in Bangladesh is fertile but prone to flooding. Figure 5.2 reports estimated changes in agricultural productivity in Bangladesh from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.2.

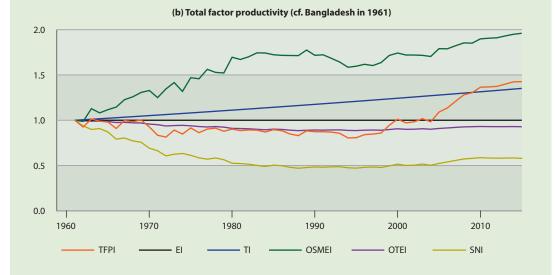
Panel (a) in Figure 5.2 indicates that land productivity increased at a much faster rate than labor productivity over the sample period. In 2015, output per unit of land (respectively labor) was 3.786 (respectively 1.657) times higher than it had been in 1961. On the other hand, capital productivity decreased over the sample period. In 2015, output per unit of capital was 51.8% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 2.184 (respectively 7.512) while the area of land used for agricultural production fell by almost 5%.

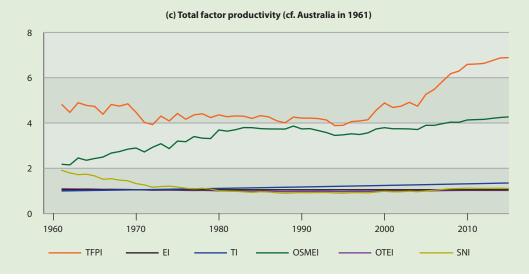
Panel (b) in Figure 5.2 indicates that TFP in Bangladesh agriculture was 42.7% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.960 \times 0.929 \times 0.580$ = 1.427.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 96% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 7.1% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 42% fall in measured TFP. In the case of Bangladesh, an important source of statistical noise is measurement error, especially the measurement of capital.

Panel (c) in Figure 5.2 indicates that TFP in Bangladesh in 2015 was 6.888 times higher than TFP had been in Australia in 1961. The breakdown is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 4.269 \times 1.022 \times 1.109$ = 6.888.


This decomposition indicates that (i) the production environment in Bangladesh (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Bangladesh were 4.269 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Bangladesh were 2.2% more technically efficient in 2015 than Australian farmers had been in 1961.

PRODUCTIVITY CHANGE IN BANGLADESH

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 39

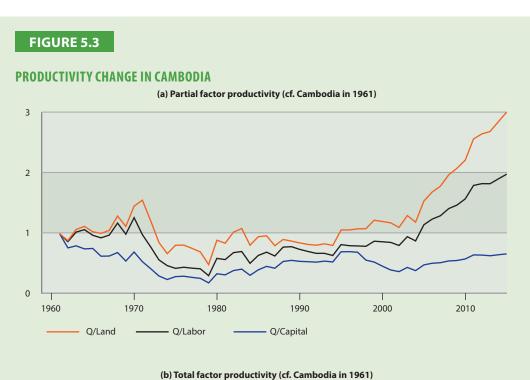
Year 1961	IVITY CHANG Q/Land	E IN BANG Q/Lab.	-		DESH II	N 1961)			
1961	Q/Land	O/Lab.							
	4		Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
	1	1	1	1	1	1	1	1	1
1962	0.949	0.925	0.890	0.926	1	1.006	0.987	0.994	0.938
1963	1.069	1.015	0.943	1.014	1	1.011	1.128	0.990	0.899
1964	1.064	0.988	0.891	0.990	1	1.017	1.082	0.991	0.909
1965	1.070	0.979	0.859	0.980	1	1.023	1.117	0.986	0.870
1966	1.022	0.909	0.780	0.909	1	1.028	1.146	0.975	0.791
1967	1.152	1.000	0.803	0.998	1	1.034	1.228	0.977	0.805
1968	1.169	0.984	0.688	0.983	1	1.040	1.259	0.972	0.772
1969	1.226	1.007	0.626	1.004	1	1.046	1.307	0.970	0.758
1970	1.153	0.929	0.427	0.926	1	1.052	1.329	0.958	0.692
1971	1.050	0.832	0.355	0.835	1	1.057	1.250	0.951	0.663
1972	1.019	0.821	0.326	0.814	1	1.063	1.346	0.937	0.607
1973	1.127	0.899	0.335	0.892	1	1.069	1.417	0.942	0.625
1974	1.074	0.847	0.297	0.848	1	1.075	1.318	0.944	0.634
1975	1.184	0.926	0.307	0.916	1	1.081	1.470	0.939	0.614
1976	1.135	0.875	0.276	0.863	1	1.087	1.458	0.931	0.585
1977	1.222	0.927	0.280	0.903	1	1.093	1.562	0.926	0.57
1978	1.257	0.938	0.272	0.913	1	1.100	1.528	0.930	0.584
1979	1.236	0.907	0.253	0.879	1	1.106	1.522	0.924	0.56
1980	1.288	0.932	0.242	0.903	1	1.112	1.696	0.910	0.526
1981	1.280	0.911	0.225	0.886	1	1.118	1.671	0.909	0.522
1982	1.326	0.923	0.228	0.893	1	1.124	1.701	0.906	0.51
1983	1.364	0.928	0.229	0.891	1	1.131	1.744	0.900	0.502
1984	1.352	0.909	0.224	0.871	1	1.137	1.743	0.895	0.49
1985	1.416	0.929	0.229	0.896	1	1.143	1.724	0.902	0.504
1986	1.436	0.923	0.230	0.885	1	1.150	1.717	0.899	0.499
1987	1.407	0.892	0.225	0.849	1	1.156	1.715	0.891	0.48
1988	1.372	0.879	0.222	0.831	1	1.163	1.714	0.886	0.47
1989	1.503	0.945	0.241	0.883	1	1.169	1.775	0.890	0.478
1990	1.523	0.935	0.241	0.874	1	1.176	1.717	0.893	0.48
1991	1.566	0.938	0.244	0.873	1	1.182	1.723	0.891	0.48
1992	1.705	0.930	0.243	0.870	1	1.189	1.684	0.893	0.48
1992	1.703	0.929	0.243	0.876	1	1.196	1.643	0.893	0.48
				0.805	1				
1994 1995	1.658 1.716	0.855	0.232			1.202 1.209	1.585 1.597	0.888	0.47
		0.873	0.240	0.808	1			0.886	0.472
1996	1.822	0.907	0.251	0.842	1	1.216	1.618	0.891	0.48
1997	1.835	0.903	0.252	0.848	1	1.223	1.604	0.892	0.48
1998	1.888	0.921	0.261	0.859	1	1.229	1.637	0.890	0.47
1999	2.131	1.031	0.293	0.946	1	1.236	1.716	0.898	0.49
2000	2.307	1.091	0.310	1.012	1	1.243	1.742	0.906	0.51
2001	2.252	1.054	0.303	0.971	1	1.250	1.720	0.900	0.50
2002	2.324	1.073	0.311	0.982	1	1.257	1.720	0.901	0.504
2003	2.389	1.093	0.319	1.018	1	1.264	1.717	0.907	0.51
2004	2.338	1.063	0.311	0.983	1	1.271	1.704	0.901	0.503
2005	2.651	1.200	0.352	1.091	1	1.278	1.790	0.910	0.524
2006	2.751	1.238	0.363	1.136	1	1.286	1.789	0.915	0.53
2007	2.911	1.306	0.383	1.209	1	1.293	1.823	0.922	0.55
2008	3.139	1.407	0.412	1.281	1	1.300	1.854	0.927	0.573
2009	3.172	1.421	0.415	1.304	1	1.307	1.851	0.929	0.58
2010	3.378	1.512	0.442	1.365	1	1.315	1.898	0.931	0.58
2011	3.512	1.552	0.453	1.368	1	1.322	1.906	0.930	0.584
2012	3.532	1.559	0.454	1.374	1	1.329	1.911	0.930	0.582
2012			0.462	1.399	1	1.337	1.931	0.930	0.583
	3.603	1.587	0.402	1.599		1.557	1.251	0.950	0.50.
2012 2013 2014	3.603 3.703	1.587	0.474	1.424	1	1.344	1.949	0.930	0.584

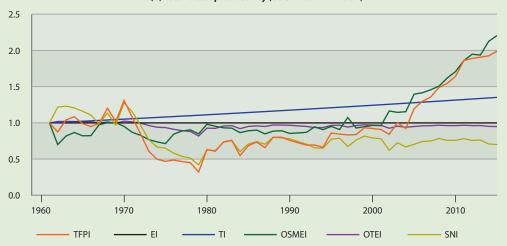
5.3 Cambodia

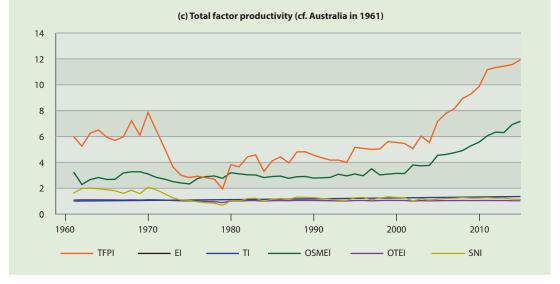
Agriculture is the most important sector in the Cambodian economy. In 2014, the agriculture sector employed 47.3% (respectively 43.1%) of the male (respectively female) labor force and contributed 28.7% to the GDP. Rice is the largest agricultural industry. The structure of the sector has changed significantly since the government transformed the country's economic system from a planned system to a market-based system in 1995. Figure 5.3 reports estimated changes in agricultural productivity in Cambodia from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.3.

Panel (a) in Figure 5.3 indicates that land and labor productivity increased steadily since the transition to a market-based economy in 1995. In 2015, output per unit of land (respectively labor) was 2.864 (respectively 1.443) times higher than it had been in 1995. On the other hand, capital productivity fell slightly since the transition to a market-based economy. In 2015, output per unit of capital was 5% lower than it had been in 1995. Taken together, these results indicate that labor per hectare and capital per hectare both increased after 1995. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.396 (respectively 3.603) while the area of land used for agricultural production increased only by a factor of 1.194.

Panel (b) in Figure 5.3 indicates that TFP in Cambodian agriculture was 98.9% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.204 \times 0.950 \times 0.703$ = 1.989.


This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 120.4% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 5% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 29.7% fall in measured TFP. In the case of Cambodia, an important source of statistical noise is measurement error, especially the measurement of capital.


Panel (c) in Figure 5.3 indicates that TFP in Cambodia in 2015 was 11.928 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 7.171 \times 1.027 \times 1.138$ = 11.928.

This decomposition indicates that (i) the production environment in Cambodia (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Cambodia were 7.171 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Cambodia were 2.7% more technically efficient in 2015 than Australian farmers had been in 1961.

42 | AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

			ODIA (CF. CA				0.000	077	
(ear 1961	Q/Land 1	Q/Lab. 1	Q/Cap. 1	TFPI 1	EI 1	TI	OSMEI 1	OTEI 1	SNI
962	0.885	0.866	0.762	0.875	1	1.006	0.701	1.02	1.21
963	1.071	1.027	0.796	1.041	1	1.000	0.819	1.021	1.23
964	1.122	1.068	0.745	1.084	1	1.017	0.867	1.019	1.20
965	1.034	0.973	0.752	0.991	1	1.023	0.822	1.016	1.16
966	1.005	0.930	0.621	0.950	1	1.028	0.824	1.011	1.10
967	1.057	0.976	0.625	0.993	1	1.034	0.975	0.998	0.98
968	1.297	1.179	0.683	1.203	1	1.040	1.003	1.014	1.13
969	1.123	0.992	0.540	1.016	1	1.046	1.005	0.996	0.97
970	1.463	1.269	0.692	1.310	1	1.052	0.952	1.024	1.27
971	1.563	0.984	0.530	1.074	1	1.057	0.869	1.015	1.15
972	1.216	0.778	0.412	0.847	1	1.063	0.828	0.996	0.96
973	0.853	0.559	0.289	0.607	1	1.069	0.768	0.964	0.76
974	0.664	0.463	0.230	0.498	1	1.075	0.738	0.940	0.66
975	0.806	0.418	0.279	0.470	1	1.081	0.714	0.935	0.65
976	0.808	0.436	0.285	0.487	1	1.087	0.846	0.911	0.58
977	0.753	0.420	0.266	0.467	1	1.093	0.888	0.893	0.53
978	0.693	0.410	0.249	0.451	1	1.100	0.904	0.881	0.51
979	0.481	0.294	0.173	0.322	1	1.106	0.849	0.819	0.41
980	0.891	0.585	0.326	0.634	1	1.112	0.981	0.928	0.62
981	0.840	0.565	0.308	0.609	1	1.118	0.954	0.925	0.61
982	1.025	0.681	0.380	0.736	1	1.124	0.932	0.957	0.73
983	1.087	0.701	0.405	0.761	1	1.131	0.928	0.962	0.75
984	0.807	0.502	0.301	0.549	1	1.137	0.866	0.920	0.60
985	0.949	0.635	0.393	0.686	1	1.143	0.891	0.951	0.70
986	0.964	0.690	0.451	0.737	1	1.150	0.901	0.959	0.74
987 988	0.798 0.903	0.625 0.774	0.420 0.533	0.659 0.801	1 1	1.156 1.163	0.849 0.886	0.950 0.971	0.70 0.80
989	0.903	0.774	0.552	0.801	1	1.169	0.892	0.971	0.80
990	0.870	0.737	0.535	0.759	1	1.176	0.855	0.970	0.79
991	0.820	0.701	0.530	0.725	1	1.182	0.861	0.959	0.74
992	0.807	0.669	0.522	0.695	1	1.189	0.870	0.951	0.70
993	0.830	0.670	0.539	0.695	1	1.196	0.946	0.937	0.65
994	0.802	0.633	0.525	0.663	1	1.202	0.906	0.935	0.65
995	1.063	0.816	0.696	0.859	1	1.209	0.952	0.966	0.77
996	1.063	0.798	0.698	0.846	1	1.216	0.908	0.969	0.79
997	1.081	0.794	0.688	0.834	1	1.223	1.074	0.942	0.67
998	1.085	0.788	0.556	0.839	1	1.229	0.929	0.963	0.76
999	1.226	0.874	0.523	0.933	1	1.236	0.948	0.974	0.81
000	1.205	0.864	0.454	0.922	1	1.243	0.965	0.969	0.79
2001	1.182	0.853	0.390	0.909	1	1.250	0.962	0.967	0.78
2002	1.105	0.802	0.363	0.843	1	1.257	1.165	0.926	0.62
2003	1.305	0.950	0.433	1.004	1	1.264	1.145	0.955	0.72
2004	1.194	0.878	0.379	0.922	1	1.271	1.155	0.940	0.66
2005	1.548	1.150	0.476	1.196	1	1.278	1.397	0.950	0.70
2006	1.699	1.245	0.503	1.298	1	1.286	1.416	0.959	0.74
2007	1.799	1.301	0.512	1.356	1	1.293	1.457	0.961	0.75
2008	1.989	1.421	0.542	1.490	1	1.300	1.508	0.968	0.78
2009	2.100	1.481	0.550	1.545	1	1.307	1.620	0.962	0.75
2010	2.236	1.585	0.575	1.643	1	1.315	1.708	0.963	0.76
2011	2.593	1.811	0.643	1.861	1	1.322	1.860	0.967	0.78
2012	2.676	1.841	0.641	1.889	1	1.329	1.947	0.963	0.75
2013	2.718	1.840	0.629	1.906	1	1.337	1.936 2.126	0.964 0.951	0.76
2014	2.882	1.922	0.646	1.926	1	1.344			

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 43

5.4 PR China

PR China is the world's largest producer and consumer of agricultural products. In 2014, the agriculture sector employed 26.1% (respectively 34.4%) of the male (respectively female) labor force and contributed 9.4% to the GDP. Approximately 75% of arable land area is used for food crops. The most important crop is rice. Figure 5.4 reports estimated changes in agricultural productivity in PR China from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.4.

Panel (a) in Figure 5.4 indicates that land and labor productivity increased significantly over the sample period. In 2015, output per unit of land (respectively labor) was 5.456 (respectively 7.296) times higher than it had been in 1961. On the other hand, capital productivity fell significantly over the sample period. In 2015, output per unit of capital was 71.2% lower than it had been in 1961. Taken together, these results indicate that labor per hectare fell and capital per hectare increased over the sample period. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.123 (respectively 28.484) while the area of land used for agricultural production increased by a factor of 1.501.

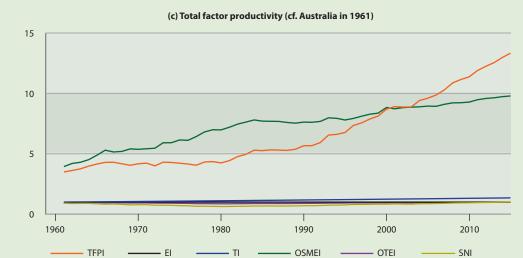
Panel (b) in Figure 5.4 indicates that TFP in Chinese agriculture was 3.81 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.483 \times 1.025 \times 1.107$ = 3.81.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 2.483; (iv) improvements in technical efficiency (the OTEI component) led to a 2.5% increase in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 10.7% increase in measured TFP. In case of PR China, the increase in scale and mix efficiency can be partly attributed to using 25.2% less labor per hectare (i.e., a more productive input mix).

Panel (c) in Figure 5.4 indicates that TFP in PR China in 2015 was 13.33 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 9.789 \times 1.001 \times 1.006$ = 13.33.


This decomposition indicates that (i) the production environment in PR China is the same as the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in PR China were 9.789 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in PR China were marginally more technically efficient in 2015 than Australian farmers had been in 1961.

PRODUCTIVITY CHANGE IN PR CHINA

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 45

TABLE	5.4								
	VITY CHANG								
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	0.07
1962	1.041	1.039	0.998	1.035	1	1.006	1.065	0.993	0.97
963	1.085	1.080	0.973	1.073	1	1.011	1.090	0.994	0.97
1964	1.162	1.152	0.946	1.138	1	1.017	1.145	0.995	0.98
965	1.241	1.213	0.927	1.188	1	1.023	1.239	0.986	0.95
966	1.318	1.267	0.723	1.227	1	1.028	1.344	0.974	0.91
967	1.323	1.249	0.587	1.229	1	1.034	1.306	0.980	0.92
968	1.305	1.208	0.471	1.193	1	1.040	1.318	0.969	0.89
969	1.296	1.179	0.408	1.158	1	1.046	1.370	0.952	0.84
970	1.362	1.220	0.621	1.193	1	1.052	1.363	0.959	0.86
971	1.398	1.234	0.539	1.208	1	1.057	1.374	0.959	0.86
972	1.349	1.174	0.416	1.144	1	1.063	1.386	0.942	0.82
973	1.480	1.277	0.376	1.231	1	1.069	1.500	0.939	0.81
974	1.464	1.260	0.316	1.225	1	1.075	1.501	0.936	0.81
975	1.472	1.259	0.261	1.207	1	1.081	1.559	0.921	0.77
976	1.443	1.232	0.226	1.187	1	1.087	1.551	0.917	0.76
977	1.447	1.236	0.196	1.159	1	1.093	1.630	0.896	0.72
1978	1.568	1.346	0.180	1.235	1	1.100	1.727	0.896	0.72
1979	1.606	1.387	0.156	1.245	1	1.106	1.773	0.889	0.71
1980	1.590	1.381	0.130	1.245	1	1.112	1.770	0.881	0.70
1980	1.649	1.444	0.140	1.266	1	1.112	1.825	0.883	0.70
					1				
1982	1.764	1.573	0.147	1.363		1.124	1.891	0.892	0.71
983	1.853	1.680	0.152	1.416	1	1.131	1.934	0.895	0.72
984	1.967	1.816	0.163	1.515	1	1.137	1.979	0.905	0.74
985	1.875	1.760	0.159	1.504	1	1.143	1.954	0.905	0.74
1986	1.891	1.781	0.160	1.522	1	1.150	1.951	0.907	0.74
1987	1.972	1.861	0.166	1.517	1	1.156	1.948	0.905	0.74
1988	1.986	1.877	0.171	1.510	1	1.163	1.926	0.905	0.74
1989	2.012	1.909	0.180	1.538	1	1.169	1.912	0.911	0.75
990	2.135	2.039	0.201	1.620	1	1.176	1.933	0.920	0.77
991	2.168	2.087	0.214	1.623	1	1.182	1.930	0.920	0.77
1992	2.238	2.164	0.229	1.695	1	1.189	1.948	0.927	0.78
1993	2.382	2.323	0.258	1.873	1	1.196	2.023	0.941	0.82
1994	2.451	2.418	0.279	1.889	1	1.202	2.013	0.943	0.82
1995	2.630	2.605	0.308	1.934	1	1.209	1.978	0.952	0.85
1996	2.845	2.834	0.334	2.099	1	1.216	2.011	0.966	0.88
1997	2.917	2.928	0.334	2.161	1	1.223	2.058	0.966	0.88
998	3.027	3.066	0.330	2.253	1	1.229	2.099	0.970	0.90
999	3.113	3.178	0.313	2.323	1	1.236	2.123	0.973	0.90
2000	3.286	3.380	0.266	2.484	1	1.243	2.240	0.975	0.91
2001	3.365	3.493	0.318	2.546	1	1.250	2.213	0.982	0.93
2002	3.499	3.680	0.301	2.535	1	1.257	2.238	0.977	0.92
2003	3.547	3.775	0.283	2.538	1	1.264	2.247	0.975	0.91
2004	3.804	4.120	0.302	2.690	1	1.271	2.255	0.986	0.95
2005	3.877	4.283	0.280	2.746	1	1.278	2.270	0.988	0.95
2006	4.023	4.494	0.289	2.820	1	1.286	2.265	0.993	0.97
2000	4.195	4.775	0.289	2.820	1	1.293	2.205	0.995	0.97
2008	4.195	5.161	0.293	3.106	1	1.300	2.308	1.005	1.01
2009	4.560	5.388	0.300	3.188	1	1.307	2.341	1.008	1.03
2010	4.682	5.642	0.285	3.251	1	1.315	2.354	1.010	1.04
2011	4.882	6.006	0.297	3.398	1	1.322	2.403	1.014	1.05
2012	5.062	6.357	0.286	3.499	1	1.329	2.430	1.016	1.06
2013	5.141	6.592	0.290	3.585	1	1.337	2.444	1.019	1.07
2014	5.317	6.962	0.280	3.707	1	1.344	2.468	1.022	1.09
2015	5.456	7.296	0.288	3.810	1	1.352	2.483	1.025	1.10

5.5 Republic of China

In 2014, the agriculture sector in the Republic of China (ROC) employed 6.3% (respectively 3.2%) of the male (respectively female) labor force and contributed less than 2% to the GDP. The sector is highly mechanized (some crops are completely mechanized) [15]. Figure 5.5 reports estimated changes in agricultural productivity in the ROC from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.5.

Panel (a) in Figure 5.5 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 2.008 (respectively 2.653) times higher than it had been in 1961. On the other hand, capital productivity fell significantly over the sample period. In 2015, output per unit of capital was 95.5% lower than it had been in 1961. Taken together, these results indicate that labor per hectare fell and capital per hectare increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production fell by 31.8% (respectively increased by a factor of 40.568) while the area of land used for agricultural production fell by 9.9%.

Panel (b) in Figure 5.5 indicates that TFP in ROC agriculture was 2.025 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.117 \times 0.941 \times 0.752$ = 2.025

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 111.7% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 5.9% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 24.8% fall in measured TFP.

Panel (c) in Figure 5.5 indicates that TFP in the ROC in 2015 was 13.319 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 10.516 \times 0.977 \times 0.911$ = 13.319.

This decomposition indicates that (i) the production environment in the ROC (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in the ROC were 10.516 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in the ROC were 2.3% less technically efficient in 2015 than Australian farmers had been in 1961.

48 | AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

TABLE 5.5

PRODUCTIVITY CHANGE IN ROC (CF. ROC IN 1961)

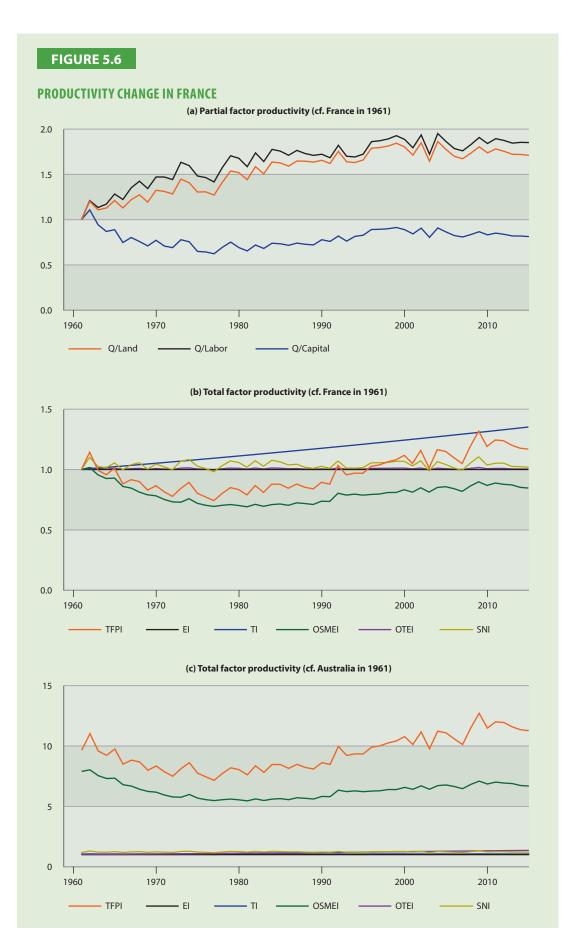
	IIVIIY CHANG								
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	0.996	0.972	0.999	0.976	1	1.006	0.989	0.997	0.984
1963	1.000	0.954	1.007	0.961	1	1.011	0.976	0.996	0.978
1964	1.124	1.047	1.135	1.060	1	1.017	1.020	1.003	1.018
1965	1.241	1.133	1.258	1.150	1	1.023	1.048	1.010	1.063
1966	1.285	1.155	1.277	1.175	1	1.028	1.042	1.013	1.082
1967	1.343	1.188	1.308	1.210	1	1.034	1.051	1.015	1.097
1968	1.425	1.237	1.016	1.261	1	1.040	1.106	1.013	1.083
1969	1.372	1.193	0.774	1.216	1	1.046	1.134	1.004	1.022
1970	1.440	1.227	0.659	1.249	1	1.052	1.179	1.001	1.006
1971	1.480	1.251	0.577	1.270	1	1.057	1.211	0.999	0.993
1972	1.504	1.262	0.506	1.277	1	1.063	1.231	0.996	0.979
1973	1.564	1.307	0.462	1.317	1	1.069	1.215	1.002	1.012
1974	1.577	1.349	0.429	1.353	1	1.075	1.246	1.001	1.008
1975	1.514	1.300	0.370	1.296	1	1.081	1.247	0.994	0.967
1976	1.656	1.440	0.373	1.425	1	1.087	1.285	1.003	1.017
1977	1.727	1.521	0.361	1.493	1	1.093	1.311	1.006	1.036
1978	1.736	1.537	0.333	1.497	1	1.100	1.351	1.001	1.007
1979	1.851	1.654	0.283	1.596	1	1.106	1.401	1.004	1.026
1980	1.844	1.658	0.262	1.585	1	1.112	1.414	1.001	1.007
1981	1.799	1.634	0.159	1.544	1	1.118	1.480	0.990	0.943
1982	1.843	1.692	0.144	1.637	1	1.124	1.543	0.991	0.952
1983	1.856	1.749	0.111	1.645	1	1.131	1.573	0.988	0.936
1984	1.904	1.835	0.099	1.723	1	1.137	1.647	0.987	0.932
1985	1.991	1.964	0.093	1.826	1	1.143	1.694	0.991	0.951
1986	1.900	1.932	0.080	1.682	1	1.150	1.630	0.983	0.913
1987	1.977	2.072	0.082	1.806	1	1.156	1.690	0.988	0.936
1988	1.978	2.167	0.079	1.816	1	1.163	1.684	0.989	0.938
1989	1.994	2.264	0.086	1.839	1	1.169	1.663	0.992	0.953
1990	1.949	2.285	0.078	1.794	1	1.176	1.648	0.988	0.937
1991	2.030	2.405	0.076	1.834	1	1.182	1.654	0.990	0.947
1992	1.996	2.344	0.071	1.864	1	1.189	1.692	0.988	0.937
1993	2.104	2.469	0.067	1.902	1	1.196	1.698	0.990	0.946
1994	2.089	2.444	0.069	1.872	1	1.202	1.690	0.988	0.933
1995	2.137	2.507	0.066	1.912	1	1.209	1.715	0.988	0.934
1996	2.162	2.537	0.067	1.933	1	1.216	1.725	0.988	0.933
1997	2.164	2.525	0.063	2.011	1	1.223	1.785	0.988	0.933
1998	2.007	2.332	0.062	1.750	1	1.229	1.693	0.973	0.864
1999	2.120	2.457	0.060	1.898	1	1.236	1.809	0.974	0.871
2000	2.080	2.407	0.058	2.046	1	1.243	1.960	0.972	0.863
2001	2.028	2.355	0.057	1.988	1	1.250	1.922	0.970	0.853
2002	2.106	2.465	0.059	1.917	1	1.257	1.904	0.964	0.831
2003	2.048	2.411	0.055	1.901	1	1.264	1.968	0.956	0.799
2004	1.983	2.338	0.053	1.810	1	1.271	1.948	0.947	0.772
2005	1.829	2.173	0.048	1.717	1	1.278	1.925	0.938	0.744
2006	1.966	2.358	0.051	1.817	1	1.286	1.944	0.946	0.769
2007	1.888	2.286	0.048	1.767	1	1.293	1.944	0.940	0.748
2008	1.856	2.270	0.046	1.805	1	1.300	1.996	0.938	0.742
2009	1.873	2.305	0.046	1.829	1	1.307	2.015	0.937	0.741
2010	1.925	2.401	0.046	1.861	1	1.315	2.040	0.937	0.740
2010	2.022	2.546	0.048	1.988	1	1.322	2.081	0.945	0.764
2012	1.973	2.507	0.046	1.928	1	1.329	2.045	0.941	0.753
2012	1.964	2.525	0.045	1.924	1	1.337	2.045	0.939	0.745
2013	1.996	2.605	0.045	1.995	1	1.344	2.105	0.940	0.750
2014	2.008	2.653	0.045	2.025	1	1.352	2.105	0.941	0.752
2013	2.000	2.000	0.040	2.025	1	1.552	2.11/	0.941	0.7 JZ

5.6 France

France is the world's sixth-largest producer and second-largest exporter of agricultural products. In 2014, the agriculture sector employed 3.9% (respectively 1.6%) of the male (respectively female) labor force and contributed 1.5% to the GDP. The main cereal crop is wheat. France has a reputation for producing high-quality cheese and wine. Figure 5.6 reports estimated changes in agricultural productivity in France from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.6.

Panel (a) in Figure 5.6 indicates that land and labor productivity increased until 2000 and remained fairly constant thereafter. In 2000, output per unit of land (respectively labor) was 1.803 (respectively 1.886) times higher than it had been in 1961, while in 2015, output per unit of land (respectively labor) was 5.2% (respectively 1.9%) lower than it had been in 2000. On the other hand, capital productivity fell over the sample period. In 2015, output per unit of capital was 18.7% lower than it had been in 1961. Taken together, these results indicate that labor per hectare fell and capital per hectare increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production fell by 23.2% (respectively increased by 74.9%) while the area of land used for agricultural production fell by 16.8%.

Panel (b) in Figure 5.6 indicates that TFP in French agriculture was 16.9% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 0.846 \times 1.003 \times 1.019$ = 1.169

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP, (ii) technical progress (the TI component) led to a 35.2% increase in TFP, (iii) lower scale and mix efficiency (the OSMEI component) led to a 15.4% fall in TFP, (iv) changes in technical efficiency (the OTEI component) had a negligible effect on TFP, and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 1.9% increase in measured TFP.

Panel (c) in Figure 5.6 indicates that TFP in France in 2015 was 11.275 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 6.682 \times 1.037 \times 1.203$ = 11.275.

This decomposition indicates that (i) the production environment in France is the same as the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in France were 6.682 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in France were 3.7% more technically efficient in 2015 than Australian farmers had been in 1961.

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 51

Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.202	1.210	1.108	1.143	1	1.006	1.016	1.016	1.101
1963	1.108	1.134	0.944	0.994	1	1.011	0.955	1.004	1.025
1964	1.129	1.172	0.870	0.956	1	1.017	0.925	1.002	1.014
1965	1.211	1.283	0.890	1.011	1	1.023	0.928	1.009	1.055
1966	1.129	1.223	0.748	0.881	1	1.028	0.859	1.000	0.997
1967	1.221	1.352	0.803	0.915	1	1.034	0.846	1.007	1.040
1968	1.275	1.425	0.759	0.900	1	1.040	0.812	1.009	1.056
1969	1.194	1.344	0.710	0.828	1	1.046	0.790	1.001	1.003
1970	1.325	1.471	0.772	0.866	1	1.052	0.782	1.008	1.045
1971	1.312	1.471	0.709	0.815	1	1.057	0.752	1.004	1.021
1972	1.284	1.443	0.691	0.777	1	1.063	0.732	1.000	0.999
1973	1.448	1.634	0.778	0.843	1	1.069	0.728	1.011	1.070
1974	1.407	1.597	0.756	0.893	1	1.075	0.758	1.013	1.082
1975	1.306	1.482	0.649	0.803	1	1.081	0.720	1.005	1.027
1976	1.307	1.465	0.644	0.772	1	1.087	0.703	1.001	1.008
1977	1.271	1.416	0.623	0.742	1	1.093	0.694	0.997	0.981
1978	1.413	1.576	0.694	0.801	1	1.100	0.703	1.005	1.031
1979	1.537	1.706	0.752	0.850	1	1.106	0.709	1.012	1.071
1980	1.520	1.677	0.692	0.833	1	1.112	0.701	1.010	1.058
1981	1.441	1.585	0.655	0.789	1	1.118	0.691	1.003	1.019
1982	1.585	1.738	0.720	0.867	1	1.124	0.711	1.012	1.072
1983	1.506	1.642	0.682	0.810	1	1.131	0.695	1.005	1.026
1984	1.637	1.776	0.740	0.878	1	1.137	0.709	1.012	1.076
1985	1.627	1.757	0.734	0.877	1	1.143	0.714	1.010	1.063
1986	1,591	1.711	0.717	0.844	1	1,150	0.703	1.006	1.038

1965 1.211 1.283 0.890 1.011 1 1.023 0.928 1.009 1.055 1966 1.129 1.223 0.748 0.881 1 1.028 0.859 1.000 1.094 1967 1.221 1.355 0.803 0.915 1 1.044 0.842 1.007 1.040 1968 1.275 1.425 0.772 0.866 1 1.052 0.782 1.008 1.045 1971 1.312 1.471 0.772 0.866 1 1.052 0.782 1.001 1.003 1972 1.284 1.443 0.691 0.777 1 0.63 0.728 1.011 1.070 1974 1.407 1.597 0.756 0.893 1 1.016 0.703 1.001 1.005 1.021 1975 1.306 1.465 0.644 0.772 1 1.087 0.703 1.001 1.058 1977 1.271 1.41	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.009 1.055 .000 0.997 .007 1.040 .009 1.056 .001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082
1966 1.129 1.223 0.748 0.881 1 1.028 0.859 1.000 0.997 1967 1.227 1.352 0.803 0.915 1 1.034 0.846 1.009 1.066 1968 1.275 1.324 0.759 0.900 1 1.040 0.812 1.009 1.033 1970 1.325 1.471 0.772 0.866 1 1.052 0.752 1.004 1.021 1972 1.284 1.443 0.691 0.777 1 1.063 0.732 1.004 1.021 1973 1.448 1.643 0.778 0.833 1 0.703 1.001 1.003 1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.011 1.007 1976 1.307 1.465 0.644 0.722 1.003 1.001 1.008 1977 1.271 1.416 0.622 0.833 1 1.1	19661.1291.2230.7480.88111.0280.8591.19671.2211.3520.8030.91511.0340.8461.19681.2751.4250.7590.90011.0400.8121.19691.1941.3440.7100.82811.0460.7901.19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0630.7321.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0930.6940.	.000 0.997 .007 1.040 .009 1.056 .001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082
1967 1.221 1.352 0.803 0.915 1 1.034 0.846 1.007 1.040 1968 1.275 1.425 0.759 0.900 1 1.044 0.812 1.009 1.035 1970 1.325 1.471 0.772 0.866 1 1.052 0.782 1.004 1.021 1971 1.312 1.471 0.779 0.815 1 1.057 0.752 1.004 1.021 1972 1.284 1.443 0.691 0.777 1 1.063 0.732 1.001 1.005 1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.013 1.082 1975 1.306 1.445 0.649 0.803 1 1.010 1.005 1.027 1976 1.307 1.465 0.644 0.801 1 1.106 0.703 1.005 1.031 1979 1.537 1.706 0.740 0.8	19671.2211.3520.8030.91511.0340.8461.19681.2751.4250.7590.90011.0400.8121.19691.1941.3440.7100.82811.0460.7901.19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.007 1.040 .009 1.056 .001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082
1967 1.221 1.352 0.803 0.915 1 1.034 0.846 1.007 1.040 1968 1.275 1.425 0.759 0.900 1 1.040 0.812 1.009 1.051 1969 1.194 1.344 0.710 0.828 1 1.046 0.790 1.031 1970 1.322 1.471 0.772 0.866 1 1.052 0.782 1.004 1.021 1972 1.284 1.443 0.691 0.777 1 1.063 0.728 1.013 1.082 1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.013 1.082 1977 1.271 1.416 0.644 0.721 1.003 1.005 1.031 1978 1.413 1.576 0.694 0.801 1 1.106 0.703 1.005 1.031 1979 1.537 1.706 0.752 0.867 1 1.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.007 1.040 .009 1.056 .001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082
1968 1.275 1.425 0.759 0.900 1 1.040 0.812 1.009 1.056 1969 1.134 1.710 0.828 1 1.046 0.790 1.016 1970 1.325 1.471 0.772 0.866 1 1.057 0.752 1.004 1.021 1972 1.284 1.443 0.691 0.777 1 1.063 0.732 1.000 0.999 1973 1.448 1.634 0.778 0.843 1 1.069 0.732 1.011 1.070 1975 1.307 1.465 0.644 0.772 1 1.087 0.703 1.001 1.008 1977 1.271 1.416 0.623 0.742 1 1.093 0.694 0.991 0.131 1978 1.537 1.706 0.752 0.850 1 1.106 0.709 1.012 1.071 1980 1.520 1.677 0.692 0.833 1 </td <td>19681.2751.4250.7590.90011.0400.8121.19691.1941.3440.7100.82811.0460.7901.19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.</td> <td>.009 1.056 .001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082</td>	19681.2751.4250.7590.90011.0400.8121.19691.1941.3440.7100.82811.0460.7901.19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.009 1.056 .001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082
1969 1.194 1.344 0.710 0.828 1 1.046 0.790 1.001 1.003 1970 1.325 1.471 0.772 0.866 1 1.052 0.782 1.004 1.021 1971 1.312 1.471 0.779 0.813 1 1.063 0.732 1.004 1.021 1972 1.284 1.443 0.691 0.777 1 1.063 0.732 1.004 0.099 1973 1.448 1.634 0.778 0.843 1 1.063 0.732 1.001 1.002 1976 1.307 1.465 0.644 0.772 1 1.087 0.703 1.005 1.027 1976 1.307 1.465 0.644 0.801 1 1.100 0.703 1.001 1.038 1977 1.537 1.776 0.752 0.850 1 1.118 0.691 1.031 1.019 1980 1.537 1.776 0.7	19691.1941.3440.7100.82811.0460.7901.19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.001 1.003 .008 1.045 .004 1.021 .000 0.999 .011 1.070 .013 1.082
1970 1.325 1.471 0.772 0.866 1 1.052 0.782 1.008 1.045 1971 1.312 1.471 0.709 0.815 1 1.057 0.752 1.004 1.021 1972 1.284 1.443 0.631 0.772 1.063 0.732 1.001 1.070 1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.011 1.070 1975 1.306 1.462 0.649 0.803 1 1.087 0.703 1.001 1.008 1977 1.271 1.416 0.623 0.742 1 1.087 0.703 1.001 1.008 1978 1.431 1.576 0.649 0.801 1 1.100 0.703 1.001 1.003 1979 1.537 1.766 0.762 0.833 1 1.124 0.711 1.012 1.072 1981 1.561 0.723 1.001 <td< td=""><td>19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.</td><td>.0081.045.0041.021.0000.999.0111.070.0131.082</td></td<>	19701.3251.4710.7720.86611.0520.7821.19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.0081.045.0041.021.0000.999.0111.070.0131.082
1971 1.312 1.471 0.709 0.815 1 1.057 0.752 1.004 1.021 1972 1.284 1.443 0.691 0.777 1 1.063 0.732 1.000 0.999 1973 1.448 1.634 0.778 0.843 1 1.069 0.728 1.011 1.070 1974 1.407 1.597 0.756 0.893 1 1.067 0.758 1.013 1.081 1975 1.306 1.445 0.644 0.772 1 1.087 0.703 1.001 1.008 1977 1.271 1.446 0.623 0.742 1 1.093 0.694 0.997 0.981 1978 1.413 1.576 0.622 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.003 1.019 1982 1.657 1.776 0.7	19711.3121.4710.7090.81511.0570.7521.19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.0041.021.0000.999.0111.070.0131.082
1972 1.284 1.443 0.691 0.777 1 1.063 0.732 1.000 0.999 1973 1.448 1.634 0.778 0.843 1 1.069 0.728 1.011 1.070 1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.013 1.082 1975 1.306 1.482 0.649 0.803 1 1.081 0.720 1.005 1.027 1976 1.307 1.465 0.644 0.772 1 1.087 0.703 1.005 1.031 1977 1.520 1.677 0.692 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.003 1.019 1982 1.585 1.738 0.720 0.867 1 1.124 0.711 1.012 1.076 1983 1.627 1.757 0.7	19721.2841.4430.6910.77711.0630.7321.19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.000 0.999 .011 1.070 .013 1.082
1973 1.448 1.634 0.778 0.843 1 1.069 0.728 1.011 1.070 1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.013 1.082 1975 1.307 1.465 0.644 0.772 1 1.087 0.703 1.001 1.008 1977 1.271 1.416 0.623 0.742 1 1.093 0.694 0.997 0.981 1978 1.413 1.576 0.694 0.801 1 1.100 0.703 1.005 1.031 1979 1.537 1.776 0.752 0.850 1 1.116 0.691 1.003 1.019 1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.003 1.012 1.072 1983 1.506 1.642 0.682 0.877 1 1.143 0.714 1.010 1.063 1984 1.637 1.7	19731.4481.6340.7780.84311.0690.7281.19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.011 1.070 .013 1.082
1974 1.407 1.597 0.756 0.893 1 1.075 0.758 1.013 1.082 1975 1.306 1.482 0.649 0.803 1 1.081 0.720 1.005 1.027 1976 1.307 1.465 0.644 0.772 1 1.087 0.703 1.001 1.008 1977 1.271 1.446 0.623 0.742 1 1.093 0.694 0.997 0.981 1978 1.413 1.576 0.692 0.833 1 1.116 0.709 1.010 1.058 1981 1.441 1.585 0.655 0.769 1 1.118 0.691 1.003 1.007 1982 1.585 1.506 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1983 1.637 1.776 0.740 0.878 1 1.137 0.709 1.021 1.076 1984 1.637 1.7	19741.4071.5970.7560.89311.0750.7581.19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	.013 1.082
1975 1.306 1.482 0.649 0.803 1 1.081 0.720 1.005 1.027 1976 1.307 1.465 0.644 0.772 1 1.087 0.703 1.001 1.008 1977 1.271 1.416 0.623 0.742 1 1.093 0.694 0.997 0.981 1978 1.413 1.576 0.694 0.801 1 1.100 0.703 1.005 1.031 1978 1.520 1.677 0.692 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.002 1.002 1983 1.506 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1984 1.637 1.776 0.744 0.877 1 1.143 0.714 1.010 1.063 1985 1.627 1.757 0.7	19751.3061.4820.6490.80311.0810.7201.19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	
1976 1.307 1.465 0.644 0.772 1 1.087 0.703 1.001 1.008 1977 1.271 1.416 0.623 0.742 1 1.093 0.694 0.997 0.981 1978 1.413 1.576 0.694 0.801 1 1.100 0.703 1.005 1.031 1979 1.537 1.706 0.752 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.003 1.019 1982 1.566 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1983 1.627 1.757 0.734 0.877 1 1.156 0.723 1.006 1.033 1986 1.647 1.765 0.741 0.877 1 1.169 0.710 1.002 1.003 1987 1.647 1.765 0.7	19761.3071.4650.6440.77211.0870.7031.19771.2711.4160.6230.74211.0930.6940.	005 1 0 2 7
1977 1.271 1.416 0.623 0.742 1 1.093 0.694 0.997 0.981 1978 1.431 1.576 0.694 0.801 1 1.100 0.703 1.005 1.031 1979 1.537 1.706 0.752 0.850 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.003 1.019 1982 1.585 1.738 0.720 0.867 1 1.124 0.711 1.012 1.072 1983 1.506 1.642 0.682 0.810 1 1.131 0.695 1.003 1.006 1.033 1984 1.637 1.776 0.740 0.878 1 1.150 0.723 1.007 1.044 1985 1.627 1.757 0.721 0.839 1 1.163 0.710 1.002 1.009 1987 1.647 1.7	1977 1.271 1.416 0.623 0.742 1 1.093 0.694 0.	
1978 1.413 1.576 0.694 0.801 1 1.100 0.703 1.005 1.031 1979 1.537 1.706 0.752 0.850 1 1.106 0.709 1.012 1.071 1980 1.520 1.677 0.692 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.113 0.691 1.003 1.012 1983 1.506 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1984 1.637 1.776 0.734 0.877 1 1.143 0.714 1.010 1.063 1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.001 1.063 1987 1.647 1.765 0.741 0.879 1 1.156 0.723 1.007 1.002 1.009 1988 1.635 1.7		
1979 1.537 1.706 0.752 0.850 1 1.106 0.709 1.012 1.071 1980 1.520 1.677 0.692 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.655 0.789 1 1.114 0.701 1.012 1.072 1982 1.585 1.736 0.740 0.867 1 1.131 0.695 1.005 1.026 1984 1.637 1.776 0.740 0.877 1 1.143 0.714 1.010 1.063 1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.010 1.063 1986 1.644 1.730 0.728 0.833 1 1.163 0.718 1.002 1.009 1987 1.646 1.730 0.728 0.833 1 1.163 0.710 1.002 1.009 1989 1.635 1.710 0.721 0.839 1 1.167 0.737 1.002 1.027 <td< td=""><td>1978 1.415 1.576 0.694 0.801 1 1.100 0.705 1.</td><td></td></td<>	1978 1.415 1.576 0.694 0.801 1 1.100 0.705 1.	
1980 1.520 1.677 0.692 0.833 1 1.112 0.701 1.010 1.058 1981 1.441 1.585 0.720 0.867 1 1.118 0.691 1.003 1.019 1982 1.585 1.738 0.720 0.867 1 1.124 0.711 1.012 1.072 1983 1.506 1.642 0.682 0.810 1 1.131 0.799 1.012 1.076 1984 1.637 1.776 0.740 0.878 1 1.137 0.709 1.012 1.076 1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.010 1.063 1987 1.647 1.765 0.723 1.005 1.022 1.003 1.004 1.018 1.003 1.019 1988 1.646 1.730 0.728 0.853 1 1.163 0.718 1.002 1.002 1999 1.651 <td< td=""><td></td><td></td></td<>		
1981 1.441 1.585 0.655 0.789 1 1.118 0.691 1.003 1.019 1982 1.585 1.738 0.720 0.867 1 1.124 0.711 1.012 1.022 1983 1.506 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1984 1.637 1.757 0.734 0.877 1 1.143 0.714 1.010 1.063 1985 1.647 1.765 0.741 0.879 1 1.156 0.723 1.007 1.044 1988 1.646 1.730 0.728 0.833 1 1.169 0.710 1.002 1.009 1989 1.655 1.722 0.779 0.894 1 1.176 0.737 1.005 1.027 1991 1.621 1.684 0.760 0.878 1 1.189 0.803 1.012 1.070 1992 1.754 1.821 0.819 1.024 1.741 1.010 1.051 1994 1.631		
1982 1.585 1.738 0.720 0.867 1 1.124 0.711 1.012 1.072 1983 1.506 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1984 1.637 1.776 0.740 0.878 1 1.137 0.709 1.012 1.076 1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.006 1.038 1986 1.647 1.765 0.741 0.879 1 1.156 0.723 1.007 1.044 1988 1.646 1.730 0.728 0.853 1 1.163 0.718 1.002 1.009 1999 1.655 1.710 0.721 0.839 1 1.182 0.737 1.002 1.002 1991 1.621 1.684 0.760 0.878 1 1.182 0.735 1.002 1.007 1991 1.631 1.692 0.8		
1983 1.506 1.642 0.682 0.810 1 1.131 0.695 1.005 1.026 1984 1.637 1.776 0.740 0.878 1 1.137 0.709 1.012 1.076 1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.010 1.063 1986 1.591 1.711 0.717 0.844 1 1.156 0.723 1.007 1.044 1988 1.646 1.730 0.728 0.853 1 1.163 0.718 1.003 1.019 1989 1.635 1.710 0.721 0.839 1 1.169 0.710 1.002 1.009 1990 1.656 1.722 0.779 0.894 1 1.182 0.737 1.002 1.009 1991 1.631 1.692 0.816 0.969 1 1.202 0.776 1.002 1.011 1994 1.631 1.692 0.816 0.969 1 2.209 0.787 1.003 1.055 <td< td=""><td></td><td></td></td<>		
1984 1.637 1.776 0.740 0.878 1 1.137 0.709 1.012 1.076 1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.010 1.063 1986 1.591 1.711 0.717 0.844 1 1.150 0.703 1.006 1.038 1987 1.647 1.765 0.741 0.879 1 1.163 0.718 1.003 1.019 1988 1.646 1.730 0.722 0.839 1 1.169 0.710 1.002 1.009 1989 1.655 1.722 0.779 0.894 1 1.176 0.737 1.005 1.027 1991 1.621 1.684 0.760 0.878 1 1.182 0.735 1.002 1.009 1992 1.754 1.821 0.816 0.969 1 1.202 0.796 1.002 1.011 1994 1.631 1.692 0.8		
1985 1.627 1.757 0.734 0.877 1 1.143 0.714 1.010 1.063 1986 1.591 1.711 0.717 0.844 1 1.150 0.703 1.006 1.038 1987 1.647 1.765 0.741 0.879 1 1.163 0.718 1.003 1.019 1988 1.646 1.730 0.721 0.839 1 1.169 0.710 1.002 1.009 1990 1.656 1.722 0.779 0.894 1 1.176 0.737 1.005 1.027 1991 1.621 1.684 0.760 0.878 1 1.182 0.735 1.002 1.009 1992 1.754 1.821 0.819 1.034 1 1.202 0.796 1.002 1.011 1994 1.631 1.692 0.816 0.969 1 1.202 0.796 1.002 1.011 1995 1.659 1.723 0.8		
19861.5911.7110.7170.84411.1500.7031.0061.03819871.6471.7650.7410.87911.1560.7231.0071.04419881.6461.7300.7280.85311.1630.7181.0031.01919891.6351.7100.7210.83911.1690.7101.0021.00919901.6561.7220.7790.89411.1760.7371.0051.02719911.6211.6840.7600.87811.1820.7351.0021.00919921.7541.8210.8191.03411.1890.8031.0121.07019931.6391.7010.7630.95511.1960.7881.0021.01119941.6511.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519971.7961.8720.8931.03811.2230.7961.0091.05519971.7961.8720.8931.03811.2260.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021		
1987 1.647 1.765 0.741 0.879 1 1.156 0.723 1.007 1.044 1988 1.646 1.730 0.728 0.853 1 1.163 0.718 1.003 1.019 1989 1.635 1.710 0.721 0.839 1 1.169 0.710 1.002 1.009 1990 1.656 1.722 0.779 0.894 1 1.176 0.737 1.005 1.027 1991 1.621 1.684 0.760 0.878 1 1.182 0.735 1.002 1.009 1992 1.754 1.821 0.819 1.034 1 1.189 0.803 1.012 1.070 1993 1.631 1.692 0.816 0.969 1 1.202 0.786 1.002 1.011 1995 1.659 1.723 0.828 0.969 1 1.209 0.787 1.003 1.015 1996 1.789 1.861 0.8		
19881.6461.7300.7280.85311.1630.7181.0031.01919891.6351.7100.7210.83911.1690.7101.0021.00919901.6561.7220.7790.89411.1760.7371.0051.02719911.6211.6840.7600.87811.1820.7351.0021.00919921.7541.8210.8191.03411.1890.8031.0121.07019931.6391.7010.7630.95511.1960.7881.0021.01119941.6311.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05619971.7961.8720.8931.03811.2290.8091.0111.06819981.8131.8910.9001.06311.2290.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2710.8511.0111.06820041		
19891.6351.7100.7210.83911.1690.7101.0021.00919901.6561.7220.7790.89411.1760.7371.0051.02719911.6211.6840.7600.87811.1820.7351.0021.00919921.7541.8210.8191.03411.1890.8031.0121.07019931.6391.7010.7630.95511.1960.7881.0021.01219941.6311.6920.8160.96911.2020.7961.0021.01119951.7891.8610.8911.02611.2160.7931.0091.05519961.7891.8610.8911.02611.2230.7961.0091.05619981.8131.8910.9001.06311.2230.7961.0091.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051		
19901.6561.7220.7790.89411.1760.7371.0051.02719911.6211.6840.7600.87811.1820.7351.0021.00919921.7541.8210.8191.03411.1890.8031.0121.07019931.6391.7010.7630.95511.1960.7881.0021.01219941.6311.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05619971.7961.8720.8931.03811.2290.8091.0101.05819971.7961.8720.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2710.8511.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051		
19911.6211.6840.7600.87811.1820.7351.0021.00919921.7541.8210.8191.03411.1890.8031.0121.07019931.6391.7010.7630.95511.1960.7881.0021.01219941.6311.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05519971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2260.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2710.8121.0071.04220031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051		
19921.7541.8210.8191.03411.1890.8031.0121.07019931.6391.7010.7630.95511.1960.7881.0021.01219941.6311.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05619971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2770.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071		
19931.6391.7010.7630.95511.1960.7881.0021.01219941.6311.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05519971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081		
19941.6311.6920.8160.96911.2020.7961.0021.01119951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05519971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081		.012 1.070
19951.6591.7230.8280.96911.2090.7871.0031.01519961.7891.8610.8911.02611.2160.7931.0091.05519971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8671.31811.3000.8631.0071.05420101	1993 1.639 1.701 0.763 0.955 1 1.196 0.788 1.	.002 1.012
19961.7891.8610.8911.02611.2160.7931.0091.05519971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8671.31811.3070.8681.0041.02420101.7381.8410.8321.19111.3150.8681.0061.03720111	1994 1.631 1.692 0.816 0.969 1 1.202 0.796 1.	.002 1.011
19971.7961.8720.8931.03811.2230.7961.0091.05619981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8671.31811.3070.8631.0091.05420091.8051.9070.8671.31811.3070.8881.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111	1995 1.659 1.723 0.828 0.969 1 1.209 0.787 1.	.003 1.015
19981.8131.8910.9001.06311.2290.8091.0101.05819991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121	1996 1.789 1.861 0.891 1.026 1 1.216 0.793 1.	.009 1.055
19991.8441.9270.9141.08011.2360.8091.0111.06820001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131	1997 1.796 1.872 0.893 1.038 1 1.223 0.796 1.	.009 1.056
20001.8031.8860.8901.11711.2430.8321.0111.06820011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141	1998 1.813 1.891 0.900 1.063 1 1.229 0.809 1.	.010 1.058
20011.7131.7940.8431.05011.2500.8121.0051.02920021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	1999 1.844 1.927 0.914 1.080 1 1.236 0.809 1.	.011 1.068
20021.8491.9350.9061.15811.2570.8481.0121.07320031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8671.31811.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	2000 1.803 1.886 0.890 1.117 1 1.243 0.832 1.	.011 1.068
20031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	2001 1.713 1.794 0.843 1.050 1 1.250 0.812 1.	.005 1.029
20031.6461.7230.8051.01311.2640.8120.9980.98820041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	2002 1.849 1.935 0.906 1.158 1 1.257 0.848 1.	.012 1.073
20041.8631.9510.9081.16511.2710.8511.0111.06520051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023		
20051.7761.8620.8641.15011.2780.8571.0071.04220061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023		
20061.6991.7850.8241.09811.2860.8411.0021.01320071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023		
20071.6731.7600.8091.04911.2930.8180.9990.99320081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023		
20081.7351.8290.8361.19311.3000.8631.0091.05420091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023		
20091.8051.9070.8671.31811.3070.8981.0171.10520101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023		
20101.7381.8410.8321.19111.3150.8681.0061.03720111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	2007 1.673 1.760 0.809 1.049 1 1.293 0.818 0.	009 1054
20111.7811.8940.8521.24411.3220.8881.0091.05120121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.	
20121.7551.8750.8381.23811.3290.8771.0091.05320131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.20091.8051.9070.8671.31811.3070.8981.	.017 1.105
20131.7221.8450.8201.20111.3370.8721.0041.02620141.7201.8540.8191.17611.3440.8521.0041.023	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.20091.8051.9070.8671.31811.3070.8981.20101.7381.8410.8321.19111.3150.8681.	.017 1.105 .006 1.037
2014 1.720 1.854 0.819 1.176 1 1.344 0.852 1.004 1.023	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.20091.8051.9070.8671.31811.3070.8981.20101.7381.8410.8321.19111.3150.8681.20111.7811.8940.8521.24411.3220.8881.	.017 1.105 .006 1.037 .009 1.051
	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.20091.8051.9070.8671.31811.3070.8981.20101.7381.8410.8321.19111.3150.8681.20111.7811.8940.8521.24411.3220.8881.20121.7551.8750.8381.23811.3290.8771.	.0171.105.0061.037.0091.051.0091.053
עני בער אין ארא אין ארא ארא ארא ארא ארא ארא ארא ארא ארא אר	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.20091.8051.9070.8671.31811.3070.8981.20101.7381.8410.8321.19111.3150.8681.20111.7811.8940.8521.24411.3220.8881.20121.7551.8750.8381.23811.3290.8771.20131.7221.8450.8201.20111.3370.8721.	.0171.105.0061.037.0091.051.0091.053.0041.026
	20071.6731.7600.8091.04911.2930.8180.20081.7351.8290.8361.19311.3000.8631.20091.8051.9070.8671.31811.3070.8981.20101.7381.8410.8321.19111.3150.8681.20111.7811.8940.8521.24411.3220.8881.20121.7551.8750.8381.23811.3290.8771.20131.7221.8450.8201.20111.3370.8721.20141.7201.8540.8191.17611.3440.8521.	.0171.105.0061.037.0091.051.0091.053.0041.026.0041.023

5.7 Germany

Agriculture is a small but politically important sector of the German economy. In 2014, the agriculture sector employed 1.8% (respectively 1%) of the male (respectively female) labor force and contributed 0.6% to the GDP. The main agricultural products are potatoes and grains. Figure 5.7 reports estimated changes in agricultural productivity in Germany from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.7.

Panel (a) in Figure 5.7 indicates that land and labor productivity both increased over the sample period. In 2015, output per unit of land (respectively labor) was 54.1% (respectively 36.5%) higher than it had been in 1961. Capital productivity also increased over the sample period, particularly after the fall of the Berlin Wall in 1989. In 1989, output per unit of capital was 13.5% lower than it had been in 1961; by 2015, output per unit of capital was 72.6% higher than it had been in 1961. Taken together, these results indicate that labor per hectare increased and capital per hectare fell over the sample period. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production fell by 2.5% (respectively 22.9%) while the area of land used for agricultural production fell by 13.6%.

Panel (b) in Figure 5.7 indicates that TFP in German agriculture was 61% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.248 \times 0.991 \times 0.962$ = 1.61.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 24.8% increase in TFP; (iv) changes in technical efficiency (the OTEI component) had a negligible effect on TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 3.8% fall in measured TFP.

Panel (c) in Figure 5.7 indicates that TFP in Germany in 2015 was 11.07 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 8.277 \times 0.998 \times 0.991$ = 11.07.

This decomposition indicates that (i) the production environment in Germany is the same as the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Germany were 8.277 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Germany were marginally less technically efficient in 2015 than Australian farmers had been in 1961.

Year	IVITY CHAN Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	TI	OSMEI	OTEI	SNI
961	1	1	1	1	1	1	1	1	
962	1.129	1.123	1.027	1.057	1	1.006	0.978	1.012	1.06
963	1.201	1.186	1.002	1.076	1	1.011	0.978	1.015	1.07
964	1.129	1.111	0.945	0.985	1	1.017	0.951	1.003	1.01
965	1.081	1.060	0.838	0.900	1	1.023	0.919	0.992	0.96
966	1.128	1.100	0.875	0.947	1	1.028	0.924	0.999	0.99
967	1.251	1.205	0.895	1.003	1	1.034	0.922	1.009	1.04
968	1.264	1.204	0.898	0.998	1	1.040	0.921	1.007	1.03
969	1.180	1.119	0.782	0.883	1	1.046	0.876	0.993	0.97
970	1.240	1.159	0.812	0.903	1	1.052	0.872	0.997	0.98
971	1.223	1.137	0.798	0.881	1	1.057	0.863	0.994	0.97
972	1.220	1.134	0.746	0.855	1	1.063	0.845	0.991	0.96
973	1.257	1.167	0.767	0.879	1	1.069	0.848	0.994	0.97
974	1.291	1.196	0.784	0.886	1	1.075	0.842	0.996	0.98
975	1.234	1.144	0.748	0.859 0.799	1	1.081	0.849	0.988	0.94
976 977	1.175 1.266	1.091 1.176	0.711 0.764	0.799	1 1	1.087 1.093	0.830 0.837	0.977 0.990	0.90
978	1.326	1.233	0.798	0.803	1	1.100	0.844	0.990	0.95
979 979	1.345	1.253	0.807	0.904	1	1.106	0.833	0.995	0.97
980	1.303	1.211	0.778	0.877	1	1.112	0.837	0.989	0.95
981	1.288	1.202	0.767	0.885	1	1.112	0.847	0.987	0.94
982	1.436	1.343	0.852	0.991	1	1.124	0.856	1.005	1.02
983	1.335	1.246	0.790	0.933	1	1.131	0.865	0.991	0.96
984	1.461	1.352	0.862	1.010	1	1.137	0.864	1.005	1.02
985	1.464	1.339	0.861	1.000	1	1.143	0.858	1.004	1.01
986	1.508	1.370	0.886	1.028	1	1.150	0.871	1.005	1.02
987	1.441	1.279	0.842	0.975	1	1.156	0.863	0.996	0.98
988	1.508	1.370	0.880	1.015	1	1.163	0.864	1.002	1.00
989	1.485	1.338	0.865	1.019	1	1.169	0.880	0.998	0.99
990	1.432	1.288	0.833	1.080	1	1.176	0.912	1.001	1.00
991	1.372	1.172	0.809	1.053	1	1.182	0.926	0.993	0.96
992	1.346	1.132	0.906	1.113	1	1.189	0.987	0.990	0.95
993	1.330	1.126	0.906	1.122	1	1.196	1.006	0.987	0.94
994	1.267	1.073	0.871	1.056	1	1.202	0.982	0.979	0.91
995	1.301	1.097	0.970	1.134	1	1.209	1.018	0.985	0.93
996	1.367	1.146	1.019	1.190	1	1.216	1.041	0.989	0.95
997	1.375	1.148	1.118	1.227	1	1.223	1.065	0.989	0.95
998	1.406	1.174	1.146	1.257	1	1.229	1.074	0.991	0.96
999	1.468	1.209	1.299	1.333	1	1.236	1.101	0.996	0.98
2000	1.541	1.262	1.372	1.444	1	1.243	1.142	1.003	1.01
001	1.517	1.241	1.407	1.459	1	1.250	1.158	1.001	1.00
2002	1.446	1.180	1.340	1.390	1	1.257	1.155	0.992	0.96
2003	1.338	1.095	1.244	1.288	1	1.264	1.148	0.978	
004	1.543 1.468	1.265 1.208	1.469 1.425	1.499 1.456	1 1	1.271 1.278	1.191 1.193	0.998 0.991	0.992 0.962
2005	1.422	1.172	1.390	1.446	1	1.278	1.214	0.991	0.90
2007	1.422	1.172	1.444	1.440	1	1.280	1.214	0.985	0.94
2008	1.534	1.288	1.546	1.666	1	1.300	1.262	1.003	1.01
2009	1.593	1.348	1.627	1.677	1	1.307	1.269	1.003	1.00
2010	1.593	1.267	1.539	1.519	1	1.307	1.232	0.988	0.94
2011	1.526	1.302	1.593	1.599	1	1.313	1.275	0.988	0.94
2012	1.536	1.318	1.626	1.598	1	1.329	1.257	0.992	0.96
2013	1.560	1.354	1.683	1.640	1	1.337	1.270	0.992	0.97
2014	1.538	1.349	1.691	1.593	1	1.344	1.247	0.991	0.95

2015

1.541

1.365

1.726

1.610 1

1.352

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 55

1.248

0.991

0.962

5.8 India

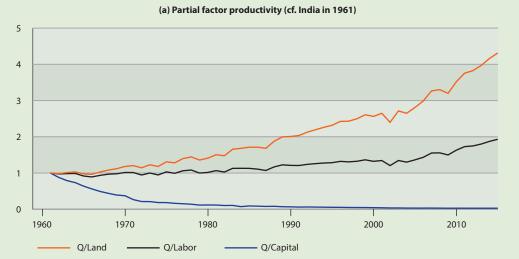
India is among the top three global producers of many crops. In 2014, the agriculture sector employed 41.7% (respectively 62.0%) of the male (respectively female) labor force and contributed 15.7% to the GDP. The agricultural sector in India is large and diverse, with an arable land area which is second only to the USA. Figure 5.8 reports estimated changes in agricultural productivity in India from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.8.

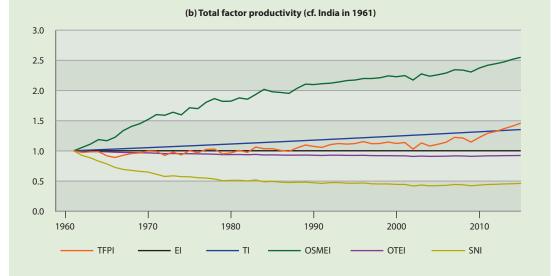
Panel (a) in Figure 5.8 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 4.315 (respectively 1.931) times higher than it had been in 1961. On the other hand, capital productivity fell dramatically over the sample period. In 2015, output per unit of capital was 97.3% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 2.294 (respectively 161.2) while the area of land used for agricultural production increased only by a factor of 1.027.

Panel (b) in Figure 5.8 indicates that TFP in Indian agriculture was 45.8% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.550 \times 0.922 \times 0.459$ = 1.458.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 2.550; (iv) lower technical efficiency (the OTEI component) led to a 7.8% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 54.1% fall in measured TFP. In case of India, important sources of statistical noise are omitted variables (e.g., rainfall) and measurement errors (especially the measurement of capital).


Panel (c) in Figure 5.8 indicates that TFP in India in 2015 was 7.06 times higher than TFP had been in Australia in 1961. The breakdown is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 0.547 \times 1.352 \times 7.526 \times 1.040 \times 1.221$ = 7.06.

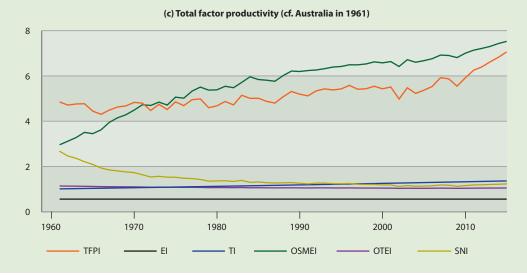

This decomposition indicates that (i) the production environment in India (dry tropical/subtropical) is 45.3% less productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in India were 7.526 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in India were 4% more technically efficient in 2015 than Australian farmers had been in 1961.

FIGURE 5.8

PRODUCTIVITY CHANGE IN INDIA

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 57

TABLE 5.8

PRODUCTIVITY CHANGE IN INDIA (CF. INDIA IN 1961)

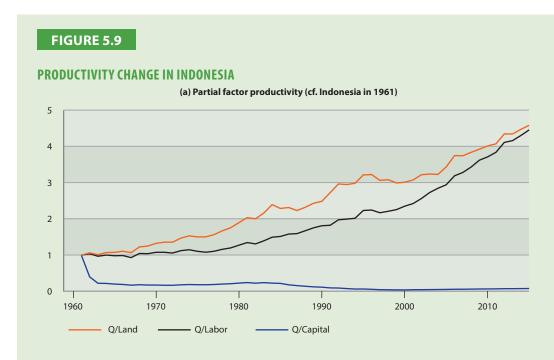
Year Q/La 1961	nd Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
	1 1							
1062 0.0		1	1	1	1	1	1	1
1962 0.9	0.973	0.878	0.972	1	1.006	1.054	0.995	0.922
	0.982	0.789	0.982	1	1.011	1.109	0.992	0.883
	0.987	0.735	0.984	1	1.017	1.185	0.987	0.828
1965 0.9	0.917	0.637	0.917	1	1.023	1.167	0.983	0.782
1966 0.9	0.892	0.561	0.888	1	1.028	1.224	0.976	0.723
1967 1.0	0.935	0.491	0.926	1	1.034	1.335	0.972	0.690
1968 1.0	0.967	0.438	0.954	1	1.040	1.404	0.969	0.674
1969 1.1	19 0.978	0.392	0.965	1	1.046	1.450	0.967	0.658
1970 1.1	81 1.014	0.373	0.997	1	1.052	1.519	0.965	0.646
1971 1.2	1.013	0.266	0.990	1	1.057	1.600	0.959	0.610
1972 1.1	43 0.945	0.212	0.923	1	1.063	1.589	0.952	0.573
1973 1.2	.27 0.999	0.211	0.978	1	1.069	1.639	0.954	0.585
1974 1.1	80 0.946	0.184	0.931	1	1.075	1.595	0.952	0.571
1975 1.3	08 1.032	0.183	1.001	1	1.081	1.713	0.951	0.568
1976 1.2	.81 0.992	0.163	0.967	1	1.087	1.698	0.948	0.552
	98 1.061	0.151	1.021	1	1.093	1.804	0.946	0.547
	45 1.082	0.138	1.029	1	1.100	1.864	0.943	0.532
	59 0.999	0.115	0.948	1	1.106	1.819	0.936	0.504
	10 1.016	0.118	0.965	1	1.112	1.823	0.937	0.508
	1.065	0.115	1.005	1	1.118	1.876	0.938	0.511
	76 1.027	0.103	0.973	1	1.124	1.855	0.935	0.499
	57 1.128	0.105	1.062	1	1.131	1.935	0.939	0.517
	isi 1.130	0.071	1.033	1	1.137	2.019	0.930	0.484
	12 1.128	0.091	1.035	1	1.143	1.978	0.932	0.491
	13 1.107	0.085	1.006	1	1.150	1.967	0.929	0.479
	is 1.069	0.078	0.990	1	1.156	1.952	0.927	0.473
	375 1.168	0.080	1.048	1	1.163	2.037	0.928	0.477
	98 1.226	0.069	1.096	1	1.169	2.104	0.920	0.480
	1.220	0.065	1.071	1	1.176	2.098	0.929	0.469
	1.210	0.060	1.056	1	1.170	2.090	0.920	0.459
	27 1.239	0.062	1.102	1	1.189	2.112	0.922	0.472
	27 1.239 96 1.259	0.002	1.120	1	1.196	2.121	0.920	0.472
1993 2.1		0.039	1.120	1	1.202	2.140	0.927	0.472
				1		2.104	0.923	
		0.053 0.052	1.119	1	1.209		0.925	0.462 0.466
		0.032	1.152		1.216	2.198 2.198	0.925	
	30 1.307		1.117	1	1.223 1.229			0.452
	98 1.324	0.047	1.121	1		2.211	0.919	0.449
	08 1.364 1.222	0.046	1.144	1	1.236	2.242	0.919	0.449
	i63 1.322	0.043	1.121	1	1.243	2.228	0.916	0.442
	i 1.345	0.040	1.137	1	1.250	2.247	0.916	0.442
	99 1.205	0.035	1.027	1	1.257	2.173	0.906	0.415
	13 1.345	0.035	1.130	1	1.264	2.275	0.912	0.431
	1.300	0.031	1.079	1	1.271	2.236	0.907	0.418
	1.363	0.031	1.108	1	1.278	2.260	0.908	0.422
	1.434	0.031	1.142	1	1.286	2.289	0.910	0.426
	1.552	0.032	1.222	1	1.293	2.343	0.916	0.441
	1.556	0.030	1.212	1	1.300	2.338	0.914	0.436
	99 1.498	0.028	1.145	1	1.307	2.306	0.907	0.419
	520 1.631	0.028	1.221	1	1.315	2.372	0.911	0.430
	56 1.728	0.028	1.290	1	1.322	2.417	0.916	0.441
	1.747	0.028	1.321	1	1.329	2.444	0.917	0.443
	1.800	0.027	1.367	1	1.337	2.474	0.919	0.450
2014 4.1	62 1.874	0.028	1.408	1	1.344	2.517	0.920	0.453
	1.931	0.027	1.458	1	1.352	2.550	0.922	0.459

5.9 Indonesia

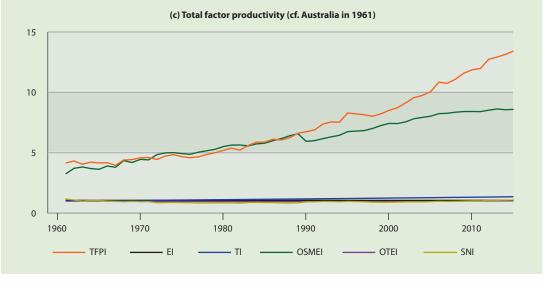
The Indonesian agricultural sector is a key global player in the production of tropical products. In 2014, the agriculture sector employed 33.5% (respectively 30.6%) of the male (respectively female) labor force and contributed 13.4% to the GDP. Indonesia is the world's largest producer of palm oil and the third-largest producer of rice. Other important products include rubber, coffee, and tobacco. Figure 5.9 reports estimated changes in agricultural productivity in Indonesia from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.9.

Panel (a) in Figure 5.9 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 4.582 (respectively 4.454) times higher than it had been in 1961. On the other hand, capital productivity fell sharply in the early 1960s and fell slowly thereafter. In 1965, output per unit of capital was 81.4% lower than it had been in 1961; by 2015, output per unit of capital was 91.9% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.528 (respectively 84.087) while the area of land used for agricultural production increased only by a factor of 1.486.

Panel (b) in Figure 5.9 indicates that TFP in Indonesian agriculture was 3.24 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.642 \times 0.985 \times 0.921$ = 3.24.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 2.642; (iv) lower technical efficiency (the OTEI component) led to a 1.5% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 7.9% fall in measured TFP.


Panel (c) in Figure 5.9 indicates that TFP in Indonesia in 2015 was 13.424 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 8.589 \times 1.017 \times 1.080$ = 13.424.

This decomposition indicates that (i) the production environment in Indonesia (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Indonesia were 8.589 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Indonesia were 1.7% more technically efficient in 2015 than Australian farmers had been in 1961.

60 AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

			NESIA (CF. IN				OCHEL	OTEL	C 111-
'ear 961	Q/Land 1	Q/Lab. 1	Q/Cap. 1	TFPI 1	EI 1	TI	OSMEI 1	OTEI	SNI
961 962	1.062	1.040	0.402	1.042	1	1.006	1.140	0.985	0.92
962 963	1.002	0.970	0.226	0.978	1	1.000	1.175	0.968	0.92
964	1.073	1.003	0.220	1.019	1	1.017	1.136	0.980	0.90
965	1.078	0.985	0.203	1.004	1	1.023	1.115	0.979	0.89
966	1.109	0.989	0.193	1.007	1	1.028	1.199	0.966	0.84
967	1.070	0.933	0.173	0.956	1	1.034	1.168	0.961	0.82
968	1.228	1.047	0.185	1.061	1	1.040	1.337	0.954	0.80
969	1.251	1.041	0.177	1.069	1	1.046	1.288	0.961	0.82
970	1.325	1.079	0.176	1.105	1	1.052	1.368	0.955	0.80
971	1.358	1.080	0.170	1.112	1	1.057	1.356	0.957	0.81
972	1.359	1.059	0.170	1.073	1	1.063	1.490	0.930	0.72
973	1.471	1.124	0.183	1.140	1	1.069	1.533	0.935	0.74
974	1.533	1.150	0.190	1.168	1	1.075	1.541	0.938	0.75
975	1.504	1.107	0.186	1.129	1	1.081	1.515	0.933	0.73
976	1.504	1.082	0.184	1.107	1	1.087	1.497	0.931	0.73
977	1.567	1.107	0.191	1.126	1	1.093	1.552	0.925	0.71
978	1.672	1.162	0.204	1.171	1	1.100	1.587	0.928	0.72
979	1.757	1.200	0.213	1.205	1	1.106	1.624	0.928	0.72
980	1.898	1.276	0.229	1.252	1	1.112	1.694	0.926	0.71
981	2.035	1.347	0.245	1.299	1	1.118	1.733	0.927	0.72
982	2.004	1.311	0.227	1.258	1	1.124	1.734	0.919	0.70
983	2.161	1.395	0.243	1.352	1	1.131	1.712	0.936	0.74
984	2.394	1.495	0.229	1.416	1	1.137	1.762	0.938	0.75
985	2.288	1.516	0.222	1.419	1	1.143	1.780	0.936	0.74
986	2.314	1.582	0.183	1.476	1	1.150	1.845	0.935	0.74
987	2.231	1.594	0.162	1.462	1	1.156	1.898	0.926	0.71
988	2.322	1.674	0.143	1.505	1	1.163	1.968	0.923	0.71
989	2.431	1.755	0.126	1.597	1	1.169	2.023	0.929	0.72
990 991	2.486	1.812	0.118	1.627	1	1.176	1.827	0.952	0.79
991 992	2.724 2.964	1.824	0.098	1.662	1 1	1.182	1.846	0.953	0.79
992 993	2.964	1.975 1.995	0.094 0.079	1.777 1.823	1	1.189 1.196	1.895 1.942	0.960 0.959	0.82 0.81
993 994	2.948	2.018	0.079	1.817	1	1.190	1.942	0.959	0.80
995	3.214	2.232	0.068	2.001	1	1.202	2.075	0.962	0.82
996	3.223	2.245	0.059	1.983	1	1.216	2.089	0.958	0.81
997	3.063	2.170	0.049	1.966	1	1.223	2.102	0.954	0.80
998	3.081	2.210	0.046	1.936	1	1.229	2.156	0.945	0.77
999	2.991	2.256	0.043	1.984	1	1.236	2.230	0.942	0.76
000	3.012	2.351	0.041	2.053	1	1.243	2.285	0.943	0.76
001	3.073	2.423	0.049	2.107	1	1.250	2.280	0.947	0.78
002	3.218	2.561	0.048	2.203	1	1.257	2.325	0.951	0.79
003	3.237	2.727	0.051	2.308	1	1.264	2.405	0.953	0.79
004	3.227	2.845	0.053	2.352	1	1.271	2.438	0.953	0.79
005	3.435	2.942	0.056	2.428	1	1.278	2.468	0.955	0.80
006	3.746	3.189	0.060	2.617	1	1.286	2.534	0.963	0.83
007	3.742	3.281	0.062	2.594	1	1.293	2.542	0.960	0.82
800	3.836	3.431	0.064	2.676	1	1.300	2.570	0.963	0.83
009	3.923	3.620	0.068	2.796	1	1.307	2.587	0.969	0.85
010	4.012	3.711	0.069	2.864	1	1.315	2.588	0.972	0.86
011	4.071	3.838	0.071	2.890	1	1.322	2.585	0.973	0.87
012	4.343	4.108	0.076	3.073	1	1.329	2.621	0.980	0.90
013	4.342	4.159	0.076	3.119	1	1.337	2.652	0.979	0.89
014	4.471	4.300	0.079	3.169	1	1.344	2.633	0.982	0.91
015	4.582	4.454	0.081	3.240	1	1.352	2.642	0.985	0.92

5.10 IR Iran

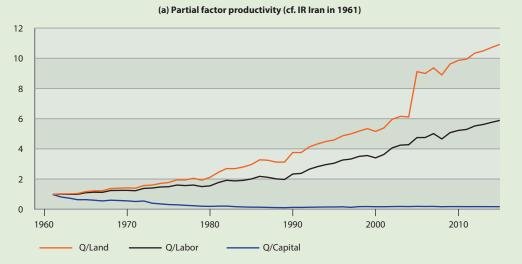
Approximately one-third of Islamic Republic of Iran (IR Iran)'s total land area is suitable for farming. Approximately 12% of total land area is cultivated. In 2014, the agriculture sector employed 17.1% (respectively 22.2%) of the male (respectively female) labor force and contributed 7.5% to the GDP. Figure 5.10 reports estimated changes in agricultural productivity in IR Iran from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.10.

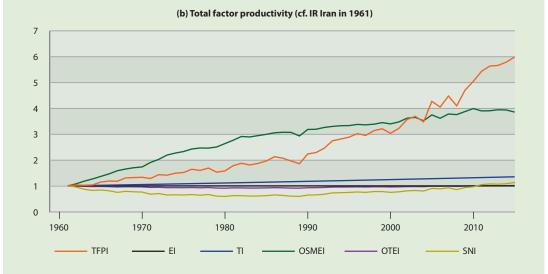
Panel (a) in Figure 5.10 indicates that land and labor productivity have both increased over the sample period. In 2015, output per unit of land (respectively labor) was 10.921 (respectively 5.897) times higher than it had been in 1961. On the other hand, capital productivity fell significantly over the sample period. In 2015, output per unit of capital was 80.6% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.431 (respectively 43.611) while the area of land used for agricultural production fell by 22.7%.

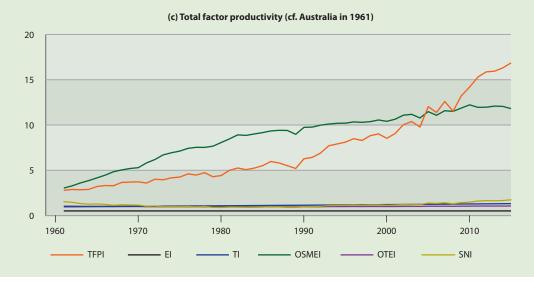
Panel (b) in Figure 5.10 indicates that TFP in Iranian agriculture was 5.988 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 3.856 \times 1.014 \times 1.133$ = 5.988.

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 3.856; (iv) improved technical efficiency (the OTEI component) led to a 1.4% increase in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 13.3% fall in measured TFP. In case of IR Iran, the increase in scale and mix efficiency can be partly attributed to a shift from crops to livestock (i.e., a more productive output mix).


Panel (c) in Figure 5.10 indicates that TFP in IR Iran in 2015 was 16.865 times higher than TFP had been in Australia in 1961. The breakdown is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 0.547 \times 1.352 \times 11.822 \times 1.092 \times 1.768$ = 16.865.


This decomposition indicates that (i) the production environment in IR Iran (dry tropical/ subtropical) is 45.3% less productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in IR Iran were 11.822 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in IR Iran were 9.2% more technically efficient in 2015 than Australian farmers had been in 1961.

PRODUCTIVITY CHANGE IN IR IRAN

TABLE 5.10			
PRODUCTIVITY CH	ANGE IN IR IRAN	(CF. IR IRAN IN	1961)

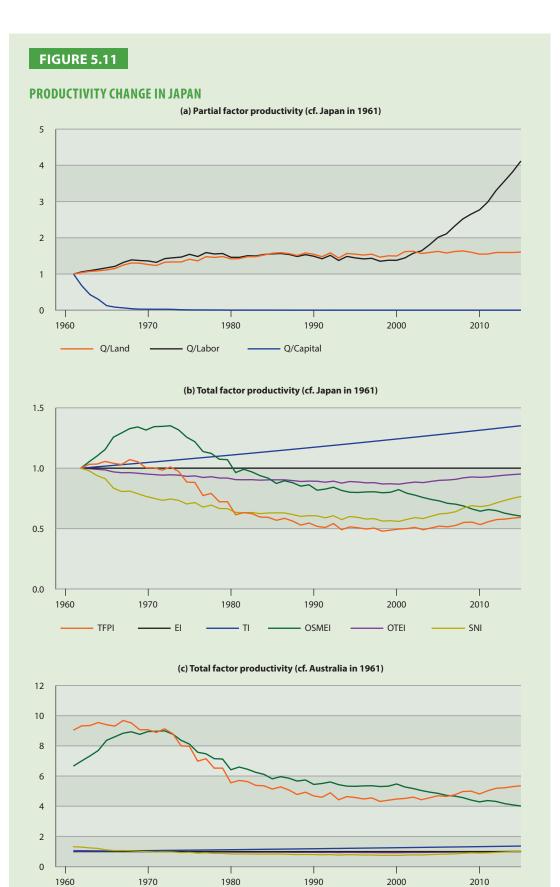
PRODUC	ITVITY CHANG			AN IN 196	-				
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.043	1.027	0.834	1.034	1	1.006	1.078	0.995	0.959
1963	1.039	1.008	0.757	1.022	1	1.011	1.183	0.982	0.870
1964	1.062	1.015	0.655	1.036	1	1.017	1.268	0.974	0.824
1965	1.187	1.118	0.657	1.148	1	1.023	1.366	0.977	0.841
1966	1.240	1.150	0.622	1.187	1	1.028	1.465	0.972	0.811
1967	1.246	1.142	0.572	1.179	1	1.034	1.587	0.959	0.750
1968	1.391	1.260	0.622	1.309	1	1.040	1.653	0.967	0.788
1969	1.416	1.268	0.600	1.323	1	1.046	1.704	0.963	0.771
1970	1.436	1.272	0.578	1.332	1	1.052	1.733	0.961	0.761
1971	1.414	1.247	0.534	1.285	1	1.057	1.906	0.940	0.678
1972	1.589	1.401	0.568	1.435	1	1.063	2.026	0.947	0.703
1973	1.619	1.427	0.424	1.413	1	1.069	2.193	0.931	0.647
1974	1.729	1.494	0.376	1.489	1	1.075	2.270	0.933	0.654
1975	1.789	1.512	0.332	1.519	1	1.081	2.329	0.931	0.648
1976	1.963	1.623	0.318	1.643	1	1.087	2.428	0.936	0.665
1977	1.960	1.588	0.282	1.598	1	1.093	2.466	0.928	0.639
1978	2.071	1.624	0.259	1.689	1	1.100	2.462	0.937	0.666
1979	1.947	1.522	0.222	1.531	1	1.106	2.505	0.915	0.604
1980	2.132	1.569	0.213	1.579	1	1.112	2.637	0.911	0.591
1981	2.461	1.785	0.228	1.782	1	1.118	2.767	0.923	0.624
1982	2.712	1.937	0.232	1.874	1	1.124	2.912	0.922	0.621
1983	2.708	1.897	0.197	1.809	1	1.131	2.893	0.916	0.604
1984	2.813	1.932	0.174	1.870	1	1.137	2.945	0.917	0.609
1985	2.982	2.027	0.162	1.965	1	1.143	2.995	0.922	0.622
1986	3.291	2.197	0.159	2.131	1	1.150	3.054	0.932	0.651
1987	3.262	2.135	0.145	2.071	1	1.156	3.075	0.925	0.630
1988	3.137	2.032	0.134	1.963	1	1.163	3.071	0.914	0.601
1989	3.142	1.991	0.128	1.856	1	1.169	2.932	0.912	0.594
1990	3.774	2.353	0.146	2.236	1	1.176	3.183	0.929	0.643
1991	3.772	2.392	0.146	2.290	1	1.182	3.191	0.932	0.651
1992	4.148	2.673	0.157	2.459	1	1.189	3.261	0.939	0.675
1993	4.346	2.843	0.165	2.747	1	1.196	3.302	0.954	0.729
1994	4.504	2.974	0.171	2.814	1	1.202	3.328	0.955	0.736
1995	4.604	3.067	0.175	2.886	1	1.209	3.333	0.958	0.747
1996	4.873	3.276	0.185	3.022	1	1.216	3.379	0.962	0.765
1997	5.005	3.340	0.149	2.951	1	1.223	3.362	0.958	0.749
1998	5.186	3.517	0.197	3.138	1	1.229	3.388	0.965	0.780
1999	5.353	3.575	0.202	3.210	1	1.236	3.448	0.965	0.780
2000	5.170	3.422	0.192	3.036	1	1.243	3.400	0.959	0.749
2001	5.395	3.646	0.190	3.222	1	1.250	3.474	0.963	0.770
2002	5.969	4.078	0.201	3.568	1	1.257	3.619	0.971	0.808
2003	6.166	4.263	0.207	3.692	1	1.264	3.651	0.973	0.822
2004	6.127	4.291	0.201	3.479	1	1.271	3.521	0.970	0.802
2005	9.120	4.761	0.213	4.273	1	1.278	3.747	0.987	0.904
2006	9.002	4.767	0.206	4.049	1	1.286	3.617	0.984	0.885
2007	9.367	5.024	0.210	4.476	1	1.293	3.781	0.990	0.925
2008	8.902	4.672	0.189	4.098	1	1.300	3.758	0.980	0.856
2009	9.625	5.088	0.199	4.701	1	1.307	3.876	0.992	0.935
2010	9.863	5.235	0.199	5.043	1	1.315	3.992	0.996	0.965
2011	9.953	5.303	0.195	5.433	1	1.322	3.902	1.005	1.048
2012	10.350	5.534	0.198	5.636	1	1.329	3.906	1.008	1.076
2013	10.492	5.629	0.195	5.662	1	1.337	3.946	1.007	1.066
2014	10.717	5.768	0.195	5.791	1	1.344	3.936	1.009	1.084
2015	10.921	5.897	0.194	5.988	1	1.352	3.856	1.014	1.133

5.11 Japan

Japanese agriculture is characterized by a shortage of farmland. Farmland constitutes less than 15% of the total land area and is intensively cultivated. In 2014, the agriculture sector employed 4.1% (respectively 3.5%) of the male (respectively female) labor force and contributed 1.2% to the GDP. Figure 5.11 reports estimated changes in agricultural productivity in Japan from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.11.

Panel (a) in Figure 5.11 indicates that labor productivity increased significantly this century. In 2015, output per unit of labor was almost three times higher than it had been in 2000. On the other hand, capital productivity fell sharply in the 1960s and was relatively stable thereafter. In 2015, output per unit of capital was 99.6% lower than it had been in 1961. Taken together, these results indicate that labor per hectare fell and capital per hectare increased significantly over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production fell by 75.3% (respectively increased by a factor of 272.284) while the area of land used for agricultural production fell by 36.7%.

Panel (b) in Figure 5.11 indicates that TFP in Japanese agriculture was 40.8% lower in 2015 than it had been in 1961. The breakdown of this decrease is as follows:


$$\begin{split} TFPI &= EI \times TI \times OSMEI \times OTEI \times SNI \\ &= 1 \times 1.352 \times 0.602 \times 0.951 \times 0.765 \\ &= 0.592. \end{split}$$

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) a fall in scale and mix efficiency (the OSMEI component) led to a 39.8% fall in TFP; (iv) lower technical efficiency (the OTEI component) led to a 4.9% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 23.5% fall in measured TFP. In case of Japan, the fall in scale and mix efficiency can be partly attributed to a shift from livestock into crops (i.e., a less productive output mix).

Panel (c) in Figure 5.11 indicates that TFP in Japan in 2015 was 5.351 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 0.986 \times 1.352 \times 4.008 \times 1 \times 1.001$ = 5.351.

This decomposition indicates that (i) the production environment in Japan (wet temperate) is 1.4% less productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Japan were four times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Japan were as technically efficient in 2015 as Australian farmers had been in 1961.

66 | AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

_____ EI

— ті

_

- OSMEI

- OTEI

SNI

- TFPI

TABLE 5.11

PRODUCTIVITY CHANGE IN JAPAN (CF. JAPAN IN 1961)

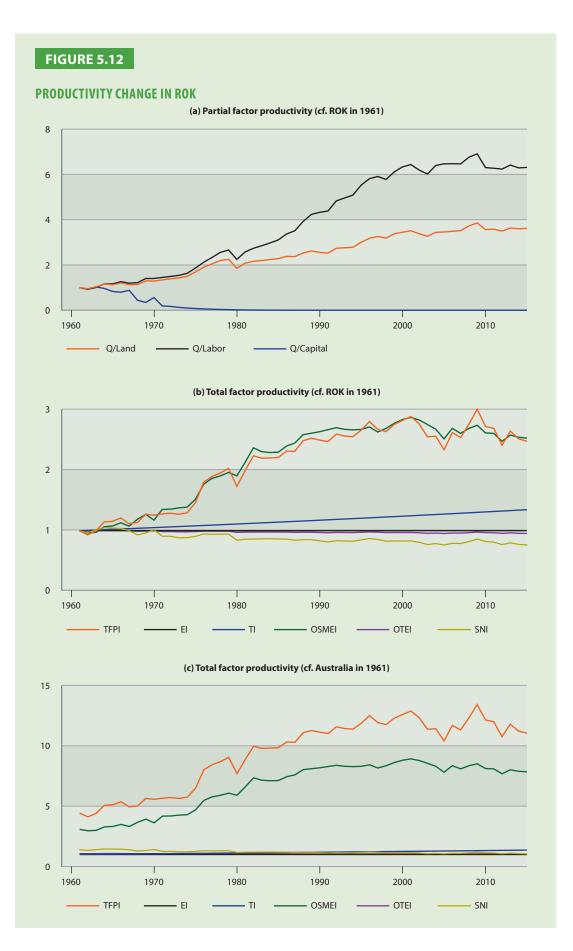
	IVITY CHANG								
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.042	1.061	0.678	1.032	1	1.006	1.051	0.997	0.979
1963	1.073	1.096	0.431	1.034	1	1.011	1.101	0.990	0.938
1964	1.090	1.132	0.303	1.056	1	1.017	1.155	0.985	0.912
1965	1.114	1.172	0.128	1.040	1	1.023	1.256	0.969	0.835
1966	1.153	1.212	0.087	1.030	1	1.028	1.292	0.962	0.806
1967	1.248	1.319	0.067	1.071	1	1.034	1.327	0.963	0.810
1968	1.306	1.391	0.044	1.053	1	1.040	1.342	0.957	0.788
1969	1.299	1.373	0.031	1.003	1	1.046	1.316	0.951	0.766
1970	1.263	1.362	0.030	1.003	1	1.052	1.344	0.947	0.750
1971	1.236	1.322	0.029	0.983	1	1.057	1.346	0.942	0.733
1972	1.325	1.426	0.029	1.010	1	1.063	1.351	0.945	0.744
1973	1.333	1.450	0.025	0.973	1	1.069	1.317	0.942	0.733
1974	1.334	1.468	0.015	0.885	1	1.075	1.257	0.932	0.703
1975	1.410	1.545	0.012	0.881	1	1.081	1.219	0.936	0.715
1976	1.364	1.483	0.010	0.773	1	1.087	1.138	0.923	0.677
1977	1.480	1.593	0.009	0.791	1	1.093	1.122	0.929	0.694
1978	1.459	1.555	0.009	0.721	1	1.100	1.074	0.929	0.665
1978	1.433	1.567	0.008	0.721	1	1.106	1.074	0.918	0.665
1979		1.462	0.008	0.722	1		0.963		
	1.418					1.112		0.905	0.633
1981	1.427	1.461	0.006	0.631	1	1.118	0.990	0.904	0.631
1982	1.478	1.506	0.006	0.623	1	1.124	0.969	0.904	0.632
1983	1.479	1.499	0.005	0.595	1	1.131	0.938	0.900	0.623
1984	1.526	1.540	0.005	0.592	1	1.137	0.917	0.903	0.629
1985	1.574	1.557	0.005	0.567	1	1.143	0.873	0.903	0.629
1986	1.590	1.567	0.005	0.584	1	1.150	0.895	0.903	0.629
1987	1.566	1.541	0.005	0.561	1	1.156	0.879	0.897	0.615
1988	1.511	1.485	0.004	0.528	1	1.163	0.851	0.889	0.600
1989	1.582	1.535	0.004	0.545	1	1.169	0.862	0.892	0.606
1990	1.544	1.491	0.004	0.518	1	1.176	0.817	0.891	0.604
1991	1.479	1.422	0.004	0.508	1	1.182	0.827	0.883	0.588
1992	1.585	1.517	0.004	0.541	1	1.189	0.842	0.892	0.605
1993	1.445	1.375	0.004	0.489	1	1.196	0.815	0.876	0.573
1994	1.570	1.487	0.004	0.513	1	1.202	0.800	0.889	0.599
1995	1.547	1.446	0.004	0.506	1	1.209	0.798	0.885	0.592
1996	1.525	1.419	0.004	0.495	1	1.216	0.803	0.878	0.578
1997	1.548	1.434	0.004	0.503	1	1.223	0.804	0.880	0.581
1998	1.467	1.353	0.004	0.477	1	1.229	0.796	0.869	0.561
1999	1.503	1.381	0.004	0.486	1	1.236	0.800	0.871	0.564
2000	1.499	1.380	0.004	0.495	1	1.243	0.822	0.867	0.558
2001	1.619	1.446	0.004	0.499	1	1.250	0.792	0.876	0.575
2002	1.629	1.573	0.004	0.509	1	1.257	0.776	0.884	0.590
2002	1.567	1.641	0.004	0.490	1	1.264	0.756	0.880	0.582
2003	1.595	1.815	0.004	0.504	1	1.271	0.740	0.890	0.602
2004	1.626	2.014	0.004	0.504	1	1.278	0.728	0.899	0.620
2005	1.581	2.109	0.004	0.519	1	1.286	0.728	0.901	0.626
2007	1.622	2.324	0.004	0.525	1	1.293	0.701	0.907	0.639
2008	1.638	2.523	0.004	0.550	1	1.300	0.686	0.920	0.671
2009	1.602	2.656	0.004	0.552	1	1.307	0.661	0.927	0.689
2010	1.549	2.770	0.003	0.532	1	1.315	0.643	0.924	0.681
2011	1.553	2.988	0.004	0.556	1	1.322	0.657	0.927	0.690
2012	1.594	3.306	0.004	0.574	1	1.329	0.648	0.935	0.712
2013	1.595	3.562	0.004	0.577	1	1.337	0.627	0.941	0.732
2014	1.595	3.821	0.004	0.586	1	1.344	0.613	0.947	0.750
2015	1.606	4.120	0.004	0.592	1	1.352	0.602	0.951	0.765

5.12 Republic of Korea

In 2014, the agriculture sector in the Republic of Korea (ROK) employed 5.6% (respectively 5.7%) of the male (respectively female) labor force and contributed 2.1% to the GDP. The most important agricultural industry is rice: rice accounts for more than 90% of total grain production and almost one half of farm income. Figure 5.12 reports estimated changes in agricultural productivity in ROK from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.12.

Panel (a) in Figure 5.12 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 3.617 (respectively 6.309) times higher than it had been in 1961. On the other hand, capital productivity fell significantly over the sample period. In 2015, output per unit of capital was negligible. Taken together, these results indicate that labor per hectare fell and capital per hectare increased significantly over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production fell by 52.7% (respectively increased by a factor of more than 12,000) while the area of land used for agricultural production fell by 17.6%.

Panel (b) in Figure 5.12 indicates that TFP in Korean agriculture was 2.5 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.552 \times 0.953 \times 0.760$ = 2.5

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 2.552; (iv) lower technical efficiency (the OTEI component) led to a 4.7% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 24% fall in measured TFP.

Panel (c) in Figure 5.12 indicates that TFP in the ROK in 2015 was 11.037 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 0.986 \times 1.352 \times 7.841 \times 1.010 \times 1.046$ = 11.037.

This decomposition indicates that (i) the production environment in the ROK (wet temperate) is 1.4% less productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in the ROK were 7.841 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and farmers in the ROK were 1% more technically efficient in 2015 than Australian farmers had been in 1961.

TABLE 5.12

PRODUCTIVITY CHANGE IN ROK (CF. ROK IN 1961)

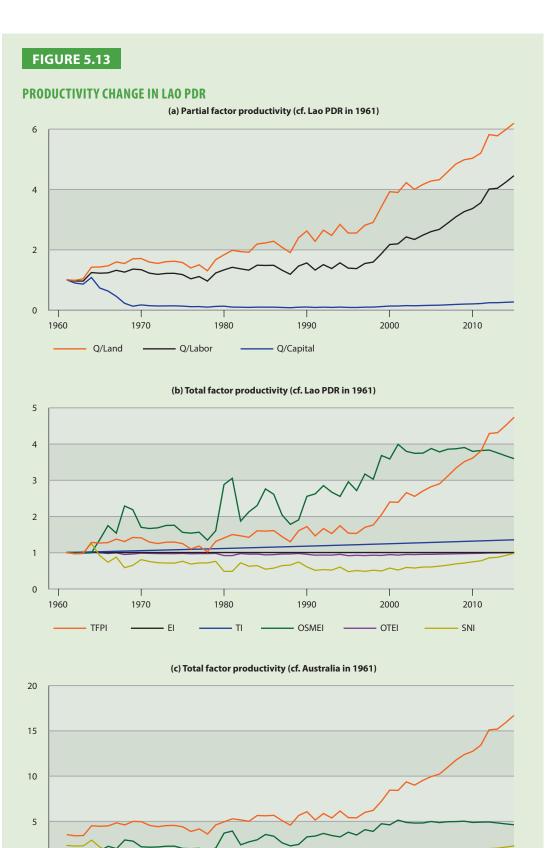
	IVITY CHANG								
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	0.953	0.926	0.939	0.930	1	1.006	0.962	0.995	0.966
1963	1.035	1.005	1.029	0.996	1	1.011	0.972	1.002	1.011
1964	1.161	1.165	0.963	1.148	1	1.017	1.066	1.007	1.051
1965	1.124	1.163	0.831	1.158	1	1.023	1.078	1.006	1.044
1966	1.209	1.264	0.795	1.213	1	1.028	1.133	1.005	1.036
1967	1.129	1.196	0.881	1.117	1	1.034	1.076	1.000	1.003
1968	1.136	1.218	0.444	1.137	1	1.040	1.191	0.989	0.929
1969	1.296	1.401	0.344	1.276	1	1.046	1.274	0.994	0.963
1970	1.290	1.403	0.558	1.259	1	1.052	1.177	1.002	1.016
1971	1.338	1.450	0.191	1.280	1	1.057	1.356	0.985	0.906
1972	1.390	1.494	0.169	1.292	1	1.063	1.361	0.985	0.907
1973	1.426	1.541	0.126	1.275	1	1.069	1.383	0.980	0.880
1974	1.499	1.630	0.100	1.300	1	1.075	1.395	0.981	0.883
1975	1.694	1.862	0.077	1.470	1	1.081	1.526	0.985	0.905
1976	1.898	2.119	0.062	1.814	1	1.087	1.780	0.992	0.945
1977	2.048	2.331	0.047	1.909	1	1.093	1.876	0.991	0.939
1978	2.199	2.554	0.035	1.967	1	1.100	1.918	0.991	0.941
1979	2.247	2.660	0.028	2.045	1	1.106	1.976	0.992	0.944
1980	1.854	2.244	0.018	1.742	1	1.112	1.919	0.972	0.840
1981	2.081	2.577	0.014	2.007	1	1.118	2.146	0.976	0.857
1982	2.158	2.737	0.010	2.255	1	1.124	2.390	0.976	0.859
1983	2.199	2.851	0.007	2.216	1	1.131	2.325	0.977	0.863
1984	2.238	2.973	0.006	2.221	1	1.137	2.311	0.977	0.865
1985	2.281	3.107	0.005	2.227	1	1.143	2.317	0.977	0.861
1986	2.381	3.368	0.004	2.334	1	1.150	2.419	0.976	0.860
1987	2.370	3.512	0.003	2.330	1	1.156	2.470	0.972	0.839
1988	2.531	3.925	0.003	2.509	1	1.163	2.610	0.974	0.849
1989	2.617	4.235	0.002	2.551	1	1.169	2.635	0.974	0.850
1990	2.556	4.325	0.002	2.519	1	1.176	2.660	0.970	0.830
1991	2.522	4.384	0.001	2.493	1	1.182	2.694	0.966	0.810
1992	2.739	4.832	0.001	2.620	1	1.189	2.727	0.971	0.832
1993	2.760	4.960	0.001	2.586	1	1.196	2.700	0.969	0.827
1995	2.779	5.085	0.001	2.577	1	1.202	2.691	0.968	0.822
1995	3.005	5.528	0.001	2.685	1	1.202	2.698	0.900	0.846
1995	3.179	5.811	0.001	2.831	1	1.216	2.740	0.975	0.869
1990	3.256	5.908	0.001	2.698	1	1.223	2.655	0.978	0.853
1997	3.230	5.778				1.225			0.833
1998			< 0.001	2.662	1		2.716	0.969	
	3.380	6.113	< 0.001	2.784	1	1.236	2.801	0.970	0.829
2000	3.446	6.334	< 0.001	2.851	1	1.243	2.865	0.969	0.826
2001	3.511	6.434	< 0.001	2.915	1	1.250	2.900	0.970	0.829
2002	3.378	6.190	< 0.001	2.791	1	1.257	2.856	0.965	0.806
2003	3.266	6.017	< 0.001	2.574	1	1.264	2.780	0.955	0.767
2004	3.441	6.395	< 0.001	2.584	1	1.271	2.701	0.959	0.784
2005	3.456	6.467	< 0.001	2.356	1	1.278	2.540	0.954	0.761
2006	3.486	6.473	< 0.001	2.646	1	1.286	2.717	0.961	0.789
2007	3.517	6.463	< 0.001	2.561	1	1.293	2.631	0.960	0.785
2008	3.726	6.758	< 0.001	2.787	1	1.300	2.715	0.967	0.816
2009	3.856	6.906	<0.001	3.038	1	1.307	2.768	0.976	0.860
2010	3.564	6.301	<0.001	2.748	1	1.315	2.640	0.968	0.818
2011	3.581	6.271	<0.001	2.716	1	1.322	2.631	0.965	0.809
2012	3.496	6.235	<0.001	2.433	1	1.329	2.499	0.955	0.767
2013	3.632	6.413	<0.001	2.670	1	1.337	2.604	0.963	0.797
2014	3.599	6.288	<0.001	2.540	1	1.344	2.566	0.956	0.770
2015	3.617	6.309	<0.001	2.500	1	1.352	2.552	0.953	0.760

5.13 Lao PDR

In 2014, the agriculture sector in the Lao PDR employed 75.2% (respectively 84.7%) of the male (respectively female) labor force and contributed 23.2% to the GDP. The main agricultural products are rice, coffee, and opium. Slash-and-burn cultivation techniques appear to be causing serious erosion and deforestation problems. Figure 5.13 reports estimated changes in agricultural productivity in Lao PDR from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.13.

Panel (a) in Figure 5.13 indicates that land and labor productivity both increased over the sample period, with particularly strong growth after 1998. In 2015, output per unit of land (respectively labor) was 6.194 (respectively 4.452) times higher than it had been in 1961. On the other hand, capital productivity fell sharply in the mid-to-late 1960s and remained relatively low thereafter. In 2015, output per unit of capital was 73.6% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 2.16 (respectively 36.433) while the area of land used for agricultural production increased by a factor of only 1.552.

Panel (b) in Figure 5.13 indicates that agricultural TFP in Lao PDR was 4.74 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 3.594 \times 0.998 \times 0.977$ = 4.74

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 3.594; (iv) changes in technical efficiency (the OTEI component) had a negligible impact on TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 2.3% fall in measured TFP. In case of Lao PDR, the increase in scale and mix efficiency can be partly attributed to a shift from crops to livestock (i.e., a more productive output mix).

Panel (c) in Figure 5.13 indicates that TFP in Lao PDR in 2015 was 16.697 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

TFPI = EI × TI × OSMEI × OTEI × SNI = 1.053 × 1.352 × 4.613 × 1.116 × 2.279 = 16.697.

This decomposition indicates that (i) the production environment in the Lao PDR (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Lao PDR were 4.613 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Lao PDR were 11.6% more technically efficient in 2015 than Australian farmers had been in 1961.

72 | AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

- TFPI

1970

— EI

1980

_

— ті

1990

- OSMEI

2000

- OTEI

2010

SNI

0

1960

TABLE 5.13

PRODUCTIVITY CHANGE IN LAO PDR (CF. LAO PDR IN 1961)

	IVITY CHANG								
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	0.980	0.959	0.891	0.964	1	1.006	0.992	0.998	0.969
1963	1.031	0.954	0.855	0.972	1	1.011	0.982	0.999	0.981
1964	1.416	1.238	1.074	1.279	1	1.017	0.991	1.014	1.251
1965	1.423	1.217	0.726	1.262	1	1.023	1.353	0.994	0.918
1966	1.459	1.229	0.625	1.274	1	1.028	1.744	0.973	0.730
1967	1.591	1.312	0.450	1.370	1	1.034	1.534	0.989	0.873
1968	1.539	1.253	0.219	1.304	1	1.040	2.286	0.945	0.580
1969	1.695	1.353	0.122	1.416	1	1.046	2.184	0.959	0.647
1970	1.704	1.335	0.165	1.407	1	1.052	1.697	0.982	0.803
1971	1.587	1.218	0.140	1.289	1	1.057	1.664	0.976	0.751
1972	1.542	1.179	0.129	1.249	1	1.063	1.682	0.971	0.719
1972	1.599	1.210	0.129	1.249	1	1.069	1.747	0.971	0.709
1973	1.615	1.213	0.132	1.290	1	1.075	1.754	0.970	0.709
1975	1.571	1.171	0.125	1.247	1	1.081	1.557	0.977	0.758
1976	1.391	1.031	0.106	1.099	1	1.087	1.535	0.965	0.682
1977	1.495	1.106	0.110	1.179	1	1.093	1.561	0.970	0.712
1978	1.297	0.957	0.091	1.020	1	1.100	1.342	0.970	0.713
1979	1.667	1.224	0.115	1.306	1	1.106	1.601	0.976	0.756
1980	1.827	1.326	0.122	1.402	1	1.112	2.880	0.915	0.478
1981	1.976	1.413	0.093	1.496	1	1.118	3.053	0.915	0.479
1982	1.934	1.362	0.089	1.462	1	1.124	1.870	0.971	0.716
1983	1.912	1.319	0.083	1.420	1	1.131	2.123	0.954	0.620
1984	2.186	1.482	0.092	1.600	1	1.137	2.300	0.958	0.639
1985	2.221	1.475	0.090	1.592	1	1.143	2.758	0.935	0.540
1986	2.279	1.479	0.090	1.606	1	1.150	2.610	0.942	0.568
1987	2.078	1.318	0.080	1.441	1	1.156	2.040	0.958	0.638
1988	1.900	1.182	0.072	1.297	1	1.163	1.779	0.960	0.653
1989	2.393	1.454	0.089	1.602	1	1.169	1.902	0.974	0.740
1990	2.618	1.559	0.095	1.718	1	1.176	2.553	0.950	0.602
1991	2.273	1.322	0.080	1.459	1	1.182	2.622	0.926	0.509
1992	2.646	1.502	0.091	1.662	1	1.189	2.850	0.920	0.527
1992	2.471	1.371	0.091	1.524	1	1.196	2.669	0.928	0.527
1993	2.836	1.561	0.093	1.742	1	1.202	2.552	0.928	0.598
1995	2.548	1.385	0.081	1.534	1	1.209	2.956	0.912	0.471
1996	2.551	1.369	0.080	1.527	1	1.216	2.712	0.923	0.502
1997	2.807	1.539	0.091	1.697	1	1.223	3.169	0.915	0.479
1998	2.902	1.585	0.093	1.761	1	1.229	3.026	0.926	0.511
1999	3.418	1.863	0.110	2.048	1	1.236	3.682	0.919	0.489
2000	3.921	2.168	0.127	2.397	1	1.243	3.586	0.943	0.570
2001	3.897	2.192	0.129	2.387	1	1.250	3.991	0.928	0.516
2002	4.222	2.420	0.142	2.656	1	1.257	3.797	0.947	0.587
2003	3.996	2.336	0.137	2.552	1	1.264	3.743	0.943	0.572
2004	4.160	2.478	0.145	2.702	1	1.271	3.747	0.949	0.597
2005	4.276	2.598	0.152	2.822	1	1.278	3.876	0.950	0.600
2006	4.319	2.672	0.156	2.900	1	1.286	3.782	0.955	0.625
2007	4.580	2.876	0.169	3.116	1	1.293	3.856	0.960	0.651
2008	4.841	3.088	0.182	3.339	1	1.300	3.869	0.966	0.687
2009	4.981	3.260	0.192	3.513	1	1.307	3.903	0.970	0.710
2010	5.031	3.361	0.192	3.612	1	1.315	3.796	0.975	0.743
2010	5.200	3.554	0.210	3.807	1	1.322	3.819	0.978	0.771
2011	5.816	4.007	0.237	4.290	1	1.329	3.832	0.978	0.853
2012	5.775	4.007	0.237	4.290	1	1.329	3.754	0.987	0.855
2013									
	5.976	4.232	0.251	4.516	1	1.344	3.672	0.994	0.921
2015	6.194	4.452	0.264	4.740	1	1.352	3.594	0.998	0.977

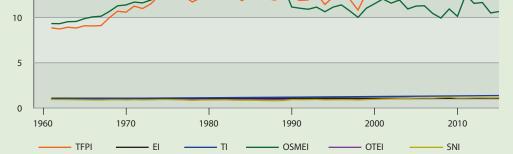
5.14 Malaysia

Agriculture is an important part of the Malaysian economy. In 2014, the agriculture sector employed 14.6% (respectively 8.5%) of the male (respectively female) labor force and contributed 9.1% to the GDP. Large-scale plantations are mainly used to produce tropical crops that are suitable for export (e.g., palm oil). The climate in Malaysia is quite stable. Thus, agriculture is rarely affected by extreme weather events. Figure 5.14 reports estimated changes in agricultural productivity in Malaysia from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.14.

Panel (a) in Figure 5.14 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 3.071 (respectively 6.18) times higher than it had been in 1961. On the other hand, capital productivity fell steadily over the sample period. In 2015, output per unit of capital was 71.1% lower than it had been in 1961. Taken together, these results indicate that labor per hectare fell and capital per hectare increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.264 (respectively 27.063) while the area of land used for agricultural production increased by a factor of 2.544.

Panel (b) in Figure 5.14 indicates that TFP in Malaysian agriculture was 93.3% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.142 \times 1.042 \times 1.201$ = 1.933


This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 14.2% increase in TFP; (iv) higher technical efficiency (the OTEI component) led to a 4.2% increase in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 20.1% increase in measured TFP.

Panel (c) in Figure 5.14 indicates that TFP in Malaysia in 2015 was 17.088 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 10.637 \times 1.021 \times 1.105$ = 17.088.

This decomposition indicates that (i) the production environment in Malaysia (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate), (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961, (iii) farmers in Malaysia were 10.637 times more scale and mix efficient in 2015 than Australian farmers had been in 1961, and (iv) farmers in Malaysia were 2.1% more technically efficient in 2015 than Australian farmers had been in 1961.

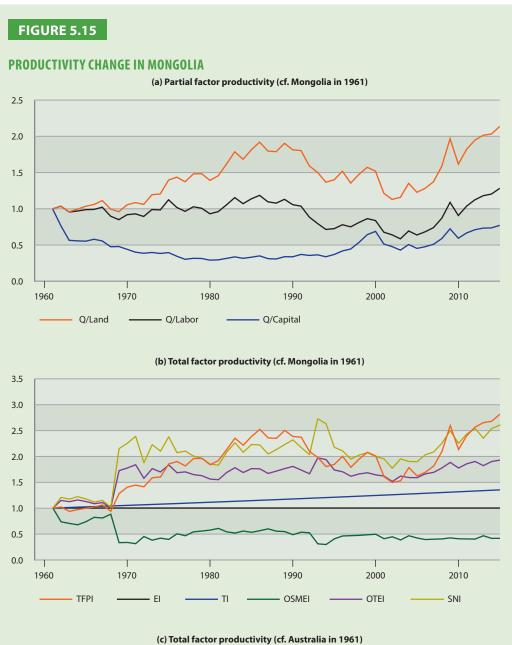
TABLE 5.14 PRODUCTIVITY CHANGE IN MALAYSIA (CF. MALAYSIA IN 1961)											
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	ті	OSMEI	OTEI	SNI		
1961	1	1	1	1	1	1	1	1	1		
1962	0.990	0.988	0.899	0.986	1	1.006	0.998	0.996	0.986		
1963	0.998	1.012	0.848	1.007	1	1.011	1.022	0.995	0.980		
1964	0.994	1.005	0.783	0.997	1	1.017	1.025	0.991	0.966		
1965	1.002	1.057	0.770	1.026	1	1.023	1.058	0.989	0.959		
1966	1.031	1.070	0.733	1.023	1	1.028	1.080	0.983	0.938		
1967	1.036	1.075	0.679	1.028	1	1.034	1.087	0.981	0.932		
1968	1.119	1.188	0.667	1.127	1	1.040	1.143	0.989	0.958		
1969	1.238	1.314	0.621	1.208	1	1.046	1.211	0.990	0.964		
1970	1.261	1.352	0.599	1.195	1	1.052	1.221	0.985	0.945		
1971	1.308	1.412	0.531	1.272	1	1.057	1.255	0.991	0.967		
1972	1.311	1.433	0.538	1.241	1	1.063	1.245	0.986	0.950		
1973	1.424	1.569	0.609	1.299	1	1.069	1.279	0.989	0.960		
1974	1.475	1.631	0.679	1.403	1	1.075	1.321	0.997	0.990		
1975	1.464	1.645	0.641	1.387	1	1.081	1.296	0.998	0.992		
1976	1.545	1.752	0.531	1.412	1	1.087	1.350	0.992	0.970		
1977	1.523	1.763	0.504	1.394	1	1.093	1.360	0.986	0.950		
1978	1.468	1.741	0.467	1.323	1	1.100	1.391	0.968	0.893		
1979	1.573	1.895	0.498	1.374	1	1.106	1.350	0.982	0.937		
1980	1.590	1.935	0.545	1.388	1	1.112	1.345	0.984	0.943		
1981	1.582	1.956	0.517	1.456	1	1.118	1.392	0.986	0.948		
1982	1.685	2.085	0.560	1.512	1	1.124	1.420	0.988	0.958		
1983	1.600	1.992	0.485	1.399	1	1.131	1.375	0.977	0.921		
1984	1.698	2.090	0.449	1.340	1	1.137	1.343	0.972	0.903		
1985	1.709	2.169	0.402	1.406	1	1.143	1.388	0.974	0.910		
1986	1.709	2.277	0.354	1.438	1	1.150	1.456	0.967	0.888		
1987	1.638	2.277	0.307	1.364	1	1.156	1.423	0.959	0.865		
1988	1.685	2.420	0.281	1.347	1	1.163	1.428	0.953	0.851		
1989	1.705	2.536	0.260	1.403	1	1.169	1.445	0.959	0.866		
1990	1.696	2.497	0.229	1.373	1	1.176	1.196	0.995	0.981		
1991	1.692	2.474	0.206	1.343	1	1.182	1.182	0.992	0.969		
1992	1.722	2.520	0.195	1.349	1	1.189	1.170	0.994	0.976		
1993	1.834	2.725	0.195	1.427	1	1.196	1.195	1.000	0.999		
1994	1.799	2.711	0.167	1.292	1	1.202	1.140	0.988	0.955		
1995	1.862	2.812	0.156	1.384	1	1.209	1.195	0.991	0.967		
1996	1.926	2.924	0.161	1.435	1	1.216	1.221	0.993	0.973		
1997	1.969	3.000	0.165	1.357	1	1.223	1.150	0.992	0.972		
1998	1.842	2.816	0.154	1.222	1	1.229	1.073	0.984	0.942		
1999	2.079	3.194	0.173	1.432	1	1.236	1.182	0.996	0.985		
2000	2.169	3.364	0.180	1.559	1	1.243	1.235	1.003	1.012		
2001	2.292	3.548	0.190	1.710	1	1.250	1.291	1.012	1.047		
2002	2.311	3.602	0.192	1.688	1	1.257	1.242	1.015	1.064		
2003	2.499	3.970	0.210	1.820	1	1.264	1.279	1.023	1.100		
2004	2.620	4.206	0.221	1.711	1	1.271	1.173	1.027	1.117		
2005	2.722	4.429	0.230	1.858	1	1.278	1.207	1.035	1.162		
2006	2.878	4.702	0.243	1.891	1	1.286	1.212	1.037	1.171		
2007	2.805	4.692	0.240	1.746	1	1.293	1.121	1.036	1.164		
2008	3.021	5.092	0.258	1.763	1	1.300	1.065	1.045	1.218		
2009	2.914	5.032	0.252	2.051	1	1.307	1.173	1.053	1.270		
2010	2.843	5.074	0.251	1.723	1	1.315	1.086	1.036	1.165		
2011	3.034	5.592	0.274	2.151	1	1.322	1.343	1.037	1.168		
2012	2.960	5.604	0.271	2.059	1	1.329	1.239	1.042	1.199		
2013	2.967	5.761	0.276	2.095	1	1.337	1.250	1.043	1.203		
2014	3.028	5.949	0.281	1.880	1	1.344	1.126	1.041	1.193		
2015	3.071	6.180	0.289	1.933	1	1.352	1.142	1.042	1.201		

5.15 Mongolia

The agriculture sector in Mongolia is heavily focused on nomadic animal husbandry. In 2014, the agriculture sector employed 29.5% (respectively 26.2%) of the male (respectively female) labor force and contributed 14.2% to the GDP. The high altitude of Mongolia makes the climate quite unstable, with extreme fluctuations in temperature. One consequence of this is that most of the land is allocated to pasture and less than 3% of arable land area is used for cropping. Figure 5.15 reports estimated changes in agricultural productivity in Mongolia from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.15.

Panel (a) in Figure 5.15 indicates that land and labor productivity fluctuated considerably but generally increased over the sample period. In 2015, output per unit of land (respectively labor) was 2.137 (respectively 1.283) times higher than it had been in 1961. On the other hand, capital productivity fluctuated and generally fell over the sample period. In 2015, output per unit of capital was 22.7% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.335 (respectively 2.217) while the area of land used for agricultural production fell by 19.8%.

Panel (b) in Figure 5.15 indicates that TFP in Mongolian agriculture was 2.816 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 0.415 \times 1.927 \times 2.607$ = 2.816

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) lower scale and mix efficiency (the OSMEI component) led to a 58.5% fall in TFP; (iv) higher technical efficiency (the OTEI component) led to a 92.7% increase in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 160.7% increase in measured TFP. In case of Mongolia, an important source of statistical noise is omitted variables (e.g., temperature).

Panel (c) in Figure 5.15 indicates that TFP in Mongolia in 2015 was 62.1% lower than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 0.588 \times 0.823 \times 0.580$ = 0.379.

This decomposition indicates that (i) the production environment in Mongolia is the same as the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Mongolia were 41.2% less scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Mongolia were 17.7% less technically efficient in 2015 than Australian farmers had been in 1961.

NODUCI	IVITY CHANG								
′ea r	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1 20
1962 1963	1.033	1.037	0.767	1.020 0.935	1	1.006	0.733	1.147	1.206
1965	0.959 0.996	0.956 0.970	0.566 0.559	0.935	1 1	1.011 1.017	0.702	1.123 1.157	1.172
1965	1.036	0.989	0.554	0.970	1	1.023	0.736	1.126	1.176
1966	1.050	0.993	0.581	1.021	1	1.028	0.821	1.084	1.110
1967	1.115	1.023	0.558	1.060	1	1.034	0.807	1.106	1.14
968	0.997	0.899	0.478	0.937	1	1.040	0.881	1.009	1.01
969	0.961	0.851	0.480	1.279	1	1.046	0.330	1.724	2.14
970	1.057	0.920	0.442	1.405	1	1.052	0.334	1.775	2.25
971	1.086	0.931	0.403	1.444	1	1.057	0.311	1.838	2.38
972	1.062	0.895	0.388	1.411	1	1.063	0.449	1.575	1.87
973	1.195	0.991	0.398	1.586	1	1.069	0.378	1.762	2.22
974	1.205	0.985	0.385	1.600	1	1.075	0.417	1.699	2.10
975	1.397	1.125	0.397	1.853	1	1.081	0.393	1.833	2.37
976	1.437	1.019	0.347	1.900	1	1.087	0.502	1.683	2.07
977	1.373	0.966	0.304	1.815	1	1.093	0.464	1.700	2.10
978	1.482	1.029	0.318	1.958	1	1.100	0.540	1.647	2.00
979	1.485	1.008	0.315	1.960	1 1	1.106 1.112	0.555	1.626	1.96
980 981	1.393 1.456	0.932 0.962	0.293 0.296	1.838 1.919	1	1.112	0.573 0.606	1.560 1.548	1.84 1.82
982	1.619	1.055	0.290	2.132	1	1.1124	0.539	1.689	2.08
983	1.787	1.155	0.338	2.352	1	1.131	0.516	1.780	2.26
984	1.684	1.071	0.318	2.215	1	1.137	0.555	1.688	2.07
985	1.815	1.138	0.333	2.385	1	1.143	0.531	1.764	2.22
986	1.920	1.186	0.351	2.523	1	1.150	0.562	1.759	2.22
987	1.797	1.097	0.314	2.358	1	1.156	0.598	1.669	2.04
988	1.788	1.079	0.308	2.348	1	1.163	0.552	1.715	2.13
989	1.904	1.132	0.341	2.502	1	1.169	0.545	1.763	2.22
990	1.815	1.058	0.339	2.385	1	1.176	0.485	1.806	2.31
991	1.804	1.037	0.372	2.371	1	1.182	0.533	1.734	2.17
992	1.593	0.887	0.358	2.094	1	1.189	0.521	1.663	2.03
993	1.503	0.798	0.366	1.980	1	1.196	0.308	1.971	2.72
994	1.368	0.716	0.340	1.802	1	1.202	0.294	1.937	2.63
995	1.401	0.727	0.371 0.420	1.845	1	1.209	0.404	1.737	2.17
996 997	1.519	0.781	0.420	2.001 1.789	1	1.216	0.459 0.466	1.701	2.10
997	1.356 1.476	0.752 0.812	0.448	1.949	1 1	1.223 1.229	0.466	1.615 1.660	1.94 2.02
999	1.573	0.865	0.644	2.078	1	1.229	0.482	1.683	2.02
000	1.519	0.839	0.690	2.008	1	1.243	0.493	1.642	1.99
2001	1.215	0.678	0.515	1.606	1	1.250	0.407	1.619	1.95
2002	1.131	0.642	0.479	1.494	1	1.257	0.444	1.513	1.77
2003	1.159	0.587	0.431	1.528	1	1.264	0.382	1.619	1.95
2004	1.352	0.695	0.508	1.782	1	1.271	0.464	1.590	1.90
2005	1.229	0.640	0.455	1.621	1	1.278	0.421	1.588	1.89
2006	1.284	0.684	0.478	1.694	1	1.286	0.3900	1.662	2.03
2007	1.374	0.742	0.511	1.812	1	1.293	0.398	1.690	2.08
2008	1.589	0.871	0.590	2.096	1	1.300	0.402	1.776	2.25
2009	1.967	1.089	0.725	2.596	1	1.307	0.422	1.883	2.49
2010	1.617	0.908	0.594	2.132	1	1.315	0.406	1.775	2.25
2011	1.822	1.038	0.668	2.402	1	1.322	0.402	1.857	2.43
2012	1.947	1.125	0.712	2.566	1	1.329	0.400	1.901	2.54
2013	2.015	1.181	0.735	2.652	1	1.337	0.463	1.821	2.35
2014	2.033 2.137	1.205 1.283	0.737 0.773	2.678 2.816	1	1.344	0.413 0.415	1.900	2.53

5.16 Nepal

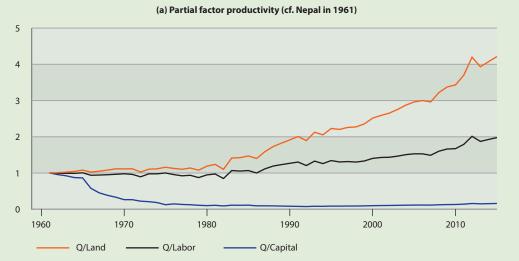
The agriculture sector in Nepal provides the livelihood for most of the population. In 2016, the agriculture sector employed 61.6% (respectively 83.3%) of the male (respectively female) labor force and contributed approximately one-third to the GDP. Only approximately 20% of the total land area of Nepal can be cultivated. Figure 5.16 reports estimated changes in agricultural productivity in Nepal from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.16.

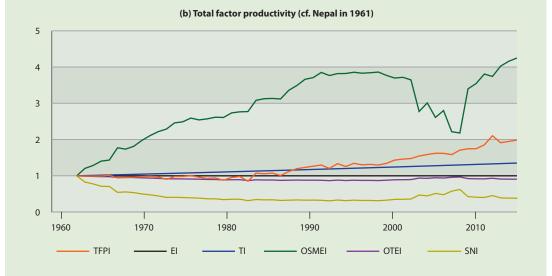
Panel (a) in Figure 5.16 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 4.213 (respectively 1.976) times higher than it had been in 1961. On the other hand, capital productivity fell sharply over the sample period. In 2015, output per unit of capital was 84.3% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 2.472 (respectively 31.1) while the area of land used for agricultural production only increased by a factor of 1.16.

Panel (b) in Figure 5.16 indicates that TFP in Nepalese agriculture was 1.986 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 4.250 \times 0.906 \times 0.381$ = 1.986

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) higher scale and mix efficiency (the OSMEI component) led to a 425% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 9.4% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 61.9% fall in measured TFP. In case of Nepal, an important source of statistical noise is omitted variables (e.g., temperature).


Panel (c) in Figure 5.16 indicates that TFP in Nepal in 2015 was 8.043 times higher than TFP had been in Australia in 1961. The breakdown is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 0.986 \times 1.352 \times 5.066 \times 1.030 \times 1.156$ = 8.043.

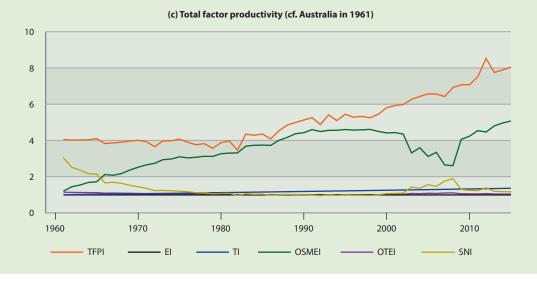

This decomposition indicates that (i) the production environment in Nepal (wet temperate) is 1.4% less productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Nepal were more than five times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Nepal were 3% more technically efficient in 2015 than Australian farmers had been in 1961.

FIGURE 5.16

PRODUCTIVITY CHANGE IN NEPAL

TABLE 5.16

PRODUCTIVITY CHANGE IN NEPAL (CF. NEPAL IN 1961)

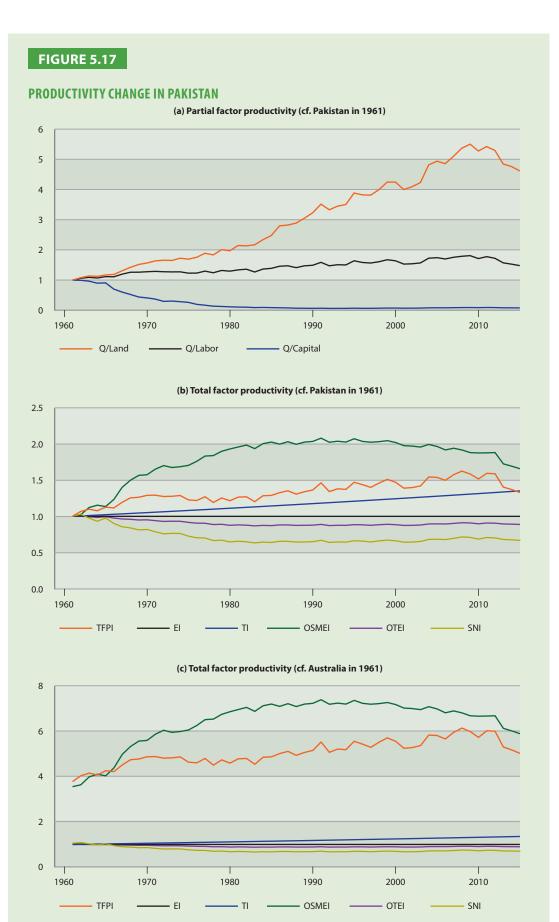
	OTEL								
	OTEI	OSMEI	TI	El	TFPI	Q/Cap.	Q/Lab.	Q/Land	Year
	1	1	1	1	1	1	1	1	1961
	0.989	1.204	1.006	1	0.992	0.954	0.990	1.007	1962
	0.984	1.285	1.011	1	0.994	0.922	0.990	1.022	1963
	0.978	1.405	1.017	1	0.995	0.872	0.988	1.042	1964
	0.977	1.435	1.023	1	1.013	0.862	1.004	1.078	1965
	0.954	1.772	1.028	1	0.944	0.576	0.936	1.024	1966
6 0.555	0.956	1.736	1.034	1	0.953	0.451	0.942	1.047	1967
0.536	0.952	1.816	1.040	1	0.964	0.382	0.951	1.078	1968
0.500	0.944	1.978	1.046	1	0.977	0.330	0.963	1.114	1969
0.475	0.938	2.109	1.052	1	0.988	0.263	0.977	1.112	1970
0.445	0.930	2.219	1.057	1	0.971	0.261	0.960	1.115	1971
6 0.404	0.916	2.290	1.063	1	0.901	0.221	0.894	1.025	1972
7 0.407	0.917	2.460	1.069	1	0.981	0.207	0.976	1.104	1973
4 0.401	0.914	2.489	1.075	1	0.981	0.182	0.976	1.114	1974
1 0.393	0.911	2.593	1.081	1	1.005	0.122	0.999	1.158	1975
0.383	0.907	2.543	1.087	1	0.962	0.145	0.955	1.124	1976
0.367	0.900	2.571	1.093	1	0.928	0.130	0.921	1.102	1977
	0.899	2.617	1.100	1	0.943	0.122	0.935	1.136	1978
	0.888	2.610	1.106	1	0.879	0.107	0.872	1.076	1979
	0.892	2.736	1.112	1	0.955	0.098	0.947	1.188	1980
	0.894	2.765	1.118	1	0.981	0.106	0.970	1.237	1981
	0.870	2.773	1.124	1	0.853	0.088	0.846	1.100	1982
	0.889	3.083	1.131	1	1.073	0.109	1.066	1.413	1983
	0.884	3.127	1.137	1	1.057	0.107	1.051	1.421	1984
	0.885	3.135	1.143	1	1.074	0.110	1.066	1.469	1985
	0.874	3.120	1.150	1	1.007	0.092	0.999	1.399	1986
	0.879	3.358	1.156	1	1.118	0.092	1.113	1.588	1987
	0.882	3.491	1.163	1	1.196	0.092	1.190	1.730	1988
	0.878	3.662	1.169	1	1.231	0.090	1.230	1.823	1989
	0.880	3.709	1.176	1	1.265	0.080	1.266	1.913	1989
	0.880	3.852	1.170	1	1.205	0.080	1.301	2.007	1990
	0.867	3.767	1.182	1	1.204	0.070	1.204	1.893	1992
									1992
	0.881	3.820	1.196	1 1	1.336 1.257	0.080	1.327 1.258	2.125 2.052	
	0.870	3.823	1.202			0.078			1994
	0.879	3.857	1.209	1	1.344	0.084	1.342	2.228	1995
	0.874	3.831	1.216	1	1.303	0.084	1.303	2.202	1996
	0.874	3.843	1.223	1	1.315	0.086	1.314	2.258	1997
	0.870	3.863	1.229	1	1.296	0.087	1.301	2.271	1998
	0.879	3.770	1.236	1	1.345	0.090	1.330	2.354	1999
	0.891	3.698	1.243	1	1.434	0.097	1.402	2.513	2000
	0.893	3.718	1.250	1	1.462	0.100	1.427	2.587	2001
	0.896	3.647	1.257	1	1.477	0.102	1.433	2.650	2002
	0.937	2.775	1.264	1	1.547	0.105	1.463	2.753	2003
	0.960	2.217	1.293	1	1.586	0.112	1.488	2.960	
	0.967			1					
	0.923	3.400	1.307	1	1.746	0.126	1.661	3.375	2009
7 0.408	0.917	3.548	1.315	1	1.747	0.128	1.671	3.431	2010
5 0.403	0.915	3.807	1.322	1	1.855	0.138	1.789	3.701	2011
0.454	0.932	3.741	1.329	1	2.105	0.156	2.011	4.197	2012
0 0.390	0.910	4.027	1.337	1	1.913	0.147	1.871	3.932	2013
0.384	0.908	4.160	1.344	1	1.949	0.152	1.925	4.075	2014
	0.906	4.250	1.352	1	1.986	0.157	1.976	4.213	2015
47 89 50 57 23 7 5 5 22	0.967 0.923 0.917 0.915 0.932	2.182 3.400 3.548 3.807 3.741	1.300 1.307 1.315 1.322 1.329	1 1 1 1 1	1.708 1.746 1.747 1.855 2.105	0.121 0.126 0.128 0.138 0.156	1.601 1.661 1.671 1.789 2.011	3.221 3.375 3.431 3.701 4.197	2010 2011 2012

5.17 Pakistan

Pakistan is one of the world's largest producers and exporters of food and crop products. It is, for example, the world's fourth-largest producer of rice, cotton, and mangoes, and the fifth-largest producer of milk and sugarcane. In 2014, the agriculture sector employed 36.7% (respectively 70.6%) of the male (respectively female) labor force and contributed 23.8% to the GDP. Figure 5.17 reports estimated changes in agricultural productivity in Pakistan from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.17.

Panel (a) in Figure 5.17 indicates that land productivity increased steadily up until 2009, and then declined. In 2009 (respectively 2015), output per unit of land was 5.501 (respectively 4.614) times higher than it had been in 1961. On the other hand, labor productivity increased slightly, and capital productivity fell significantly over the sample period. In 2015, output per unit of labor (respectively capital) was 48% higher (respectively 91.9% lower) than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 3.186 (respectively 58.273) while the area of land used for agricultural production only increased by a factor of 1.022.

Panel (b) in Figure 5.17 indicates that TFP in Pakistan agriculture was 33% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.658 \times 0.888 \times 0.668$ = 1.33

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 65.8% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 11.2% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 33.2% fall in measured TFP. In case of Pakistan, an important source of statistical noise is measurement error, especially the measurement of capital.

Panel (c) in Figure 5.17 indicates that TFP in Pakistan in 2015 was 5.015 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 5.884 \times 0.898 \times 0.702$ = 5.015.

This decomposition indicates that (i) the production environment in Pakistan is the same as the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Pakistan were 5.884 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Pakistan were 10.2% less technically efficient in 2015 than Australian farmers had been in 1961.

′ear	IVITY CHANO Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	TI	OSMEI	OTEI	SNI
ear 961	Q/Land 1	Q/Lab. 1	Q/Cap. 1	1	1	1	1	1	SIVI
962	1.082	1.062	0.995	1.068	1	1.006	1.023	1.006	1.03
963	1.137	1.092	0.966	1.099	1	1.011	1.121	0.995	0.97
964	1.125	1.071	0.900	1.077	1	1.017	1.154	0.984	0.93
965	1.173	1.117	0.910	1.127	1	1.023	1.135	0.995	0.97
966	1.188	1.110	0.703	1.117	1	1.028	1.234	0.977	0.90
967	1.310	1.198	0.604	1.194	1	1.034	1.401	0.963	0.85
968	1.423	1.261	0.525	1.256	1	1.040	1.500	0.959	0.84
969	1.519	1.263	0.442	1.264	1	1.046	1.566	0.950	0.81
970	1.567	1.278	0.412	1.290	1	1.052	1.575	0.952	0.81
971	1.637	1.290	0.373	1.292	1	1.057	1.652	0.940	0.78
972	1.660	1.278	0.297	1.274	1	1.063	1.701	0.929	0.75
973	1.651	1.273	0.307	1.277	1	1.069	1.675	0.932	0.76
974	1.725	1.275	0.288	1.288	1	1.075	1.686	0.931	0.76
975	1.695	1.231	0.263	1.227	1	1.081	1.705	0.916	0.72
976	1.757	1.233	0.199	1.219	1	1.087	1.761	0.906	0.70
977	1.889	1.298	0.170	1.270	1	1.093	1.833	0.905	0.70
978	1.835	1.244	0.138	1.192	1	1.100	1.840	0.886	0.66
979	2.007	1.320	0.128	1.254	1	1.106	1.899	0.890	0.67
980	1.971	1.297	0.117	1.216	1	1.112	1.931	0.876	0.64
981	2.147	1.339	0.108	1.266	1	1.118	1.958	0.882	0.65
982	2.135	1.362	0.104	1.270	1	1.124	1.985	0.877	0.64
983	2.170	1.269	0.091	1.203	1	1.131	1.936	0.868	0.63
984	2.339	1.367	0.096	1.285	1	1.137	2.005	0.875	0.64
985	2.478	1.390	0.090	1.289	1	1.143	2.027	0.872	0.63
986	2.797	1.460	0.086	1.327	1	1.150	1.998	0.881	0.65
987	2.824	1.475	0.080	1.353	1	1.156	2.031	0.881	0.65
988	2.887	1.413	0.071	1.307	1	1.163	1.996	0.875	0.64
989	3.051	1.474	0.069	1.340	1	1.169	2.026	0.876	0.64
990	3.229	1.492	0.066	1.364	1	1.176	2.036	0.878	0.64
991	3.516	1.589	0.070	1.462	1	1.182	2.081	0.889	0.66
992	3.330	1.475	0.064	1.342	1	1.189	2.025	0.872	0.63
993	3.447	1.510	0.065	1.380	1	1.196	2.038	0.876	0.64
994	3.504	1.503	0.065	1.373	1	1.202	2.026	0.875	0.64
995	3.884	1.640	0.071	1.471	1	1.209	2.072	0.886	0.66
996	3.823	1.585	0.066	1.437	1	1.216	2.036	0.883	0.65
997	3.814	1.566	0.067	1.400	1	1.223	2.025	0.876	0.64
998	3.996	1.609	0.071	1.461	1	1.229	2.032	0.884	0.66
999	4.247	1.675	0.075	1.511	1	1.236	2.046	0.890	0.67
000	4.246	1.641	0.075	1.471	1	1.243	2.021	0.885	0.66
001	3.998	1.531	0.071	1.389	1	1.250	1.977	0.874	0.64
002	4.094	1.541	0.073	1.397	1	1.257	1.971	0.875	0.64
003	4.229	1.570	0.075	1.421	1	1.264	1.958	0.880	0.65
004	4.815	1.726	0.083	1.544	1	1.271	1.994	0.895	0.68
005	4.938	1.744	0.085	1.538	1	1.278	1.966	0.896	0.68
006	4.856	1.701	0.084	1.498	1	1.286	1.918	0.894	0.68
007	5.100	1.757	0.088	1.575	1	1.293	1.941	0.902	0.69
008	5.367	1.790	0.091	1.626	1	1.300	1.917	0.911	0.71
009	5.501	1.810	0.093	1.585	1	1.307	1.881	0.909	0.70
010	5.276	1.715	0.089	1.517	1	1.315	1.876	0.897	0.68
011	5.422	1.777	0.094	1.594	1	1.322	1.878	0.908	0.70
012	5.293	1.724	0.092	1.588	1	1.329	1.881	0.905	0.70
013	4.845	1.572	0.084	1.404	1	1.337	1.725	0.895	0.68
014	4.761	1.530	0.083	1.371	1	1.344	1.693	0.892	0.67
015	4.614	1.480	0.081	1.330	1	1.352	1.658	0.888	0.66

5.18 Philippines

The Philippines is the world's eighth-largest producer of rice, and the largest producer of coconuts. In 2014, the agriculture sector employed 37.2% (respectively 20.2%) of the male (respectively female) labor force and contributed 11.3% to the GDP. Figure 5.18 reports estimated changes in agricultural productivity in the Philippines from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.18.

Panel (a) in Figure 5.18 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 2.619 (respectively 1.417) times higher than it had been in 1961. Capital productivity also increased over the sample period, albeit not as steadily. In 2015, output per unit of capital was 1.516 times higher than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of three (respectively 2.805) while the area of land used for agricultural production increased only by a factor of 1.624.

Panel (b) in Figure 5.18 indicates that TFP in the Philippines agriculture was 33% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.406 \times 0.955 \times 0.733$ = 1.33

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 40.6% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 4.5% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 26.7% fall in measured TFP.

Panel (c) in Figure 5.18 indicates that TFP in the Philippines in 2015 was 10.63 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 6.313 \times 1.029 \times 1.150$ = 10.63.

This decomposition indicates that (i) the production environment in the Philippines (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Philippines were 6.313 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Philippines were 2.9% more technically efficient in 2015 than Australian farmers had been in 1961.

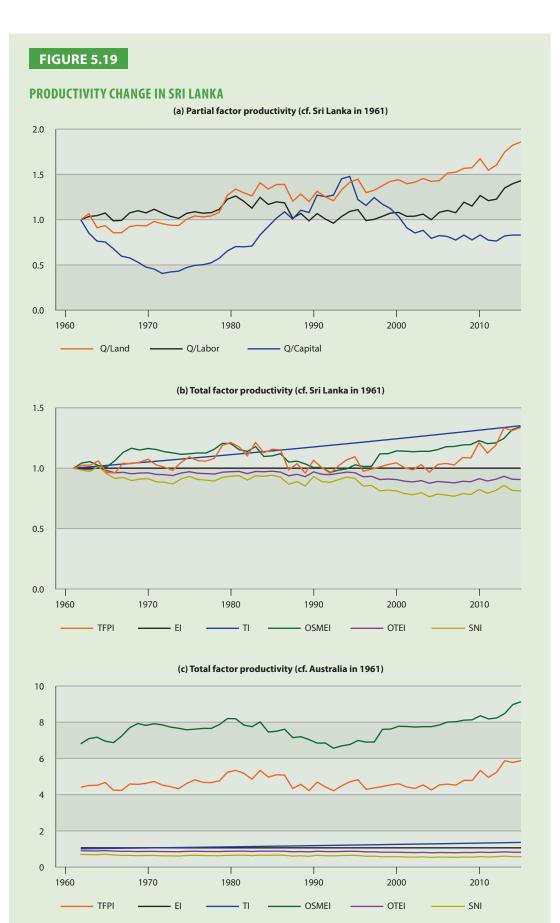
TABLE	5.18								
PRODUCT	IVITY CHANG	E IN PHILIP	PINES (CF.	PHILIPPIN	ES IN	-			
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.055	1.034	1.047	1.031	1	1.006	1.038	0.999	0.988
1963	1.083	1.043	0.867	1.039	1	1.011	1.085	0.994	0.953
1964	1.057	1.025	0.876	1.024	1	1.017	1.058	0.995	0.957
1965	1.068	1.004	0.882	0.998	1	1.023	1.079	0.989	0.915
1966	1.102	1.009	0.908	1.011	1	1.028	1.060	0.992	0.935
1967	1.094	0.997	0.920	0.997	1	1.034	1.053	0.990	0.924
1968	1.101	0.976	0.795	0.968	1	1.040	1.076	0.984	0.880
1969	1.159	0.999	0.727	0.976	1	1.046	1.148	0.976	0.833
1970	1.220	1.033	0.791	1.014	1	1.052	1.160	0.979	0.850
1971	1.267	1.047	0.773	1.029	1	1.057	1.162	0.980	0.855
1972	1.225	1.009	0.721	0.999	1	1.063	1.150	0.976	0.837
1973	1.252	1.030	0.684	0.999	1	1.069	1.158	0.975	0.828
1974	1.310	1.089	0.658	1.047	1	1.075	1.217	0.974	0.821
1975	1.420	1.200	0.667	1.173	1	1.081	1.295	0.980	0.855
1976	1.466	1.274	0.722	1.228	1	1.087	1.387	0.976	0.834
1977	1.440	1.278	0.728	1.233	1	1.093	1.391	0.975	0.831
1978	1.472	1.284	0.733	1.226	1	1.100	1.416	0.972	0.810
1979	1.484	1.298	0.748	1.231	1	1.106	1.423	0.971	0.806
1980	1.502	1.317	0.806	1.255	1	1.112	1.436	0.971	0.809
1981	1.533	1.337	0.852	1.281	1	1.118	1.439	0.973	0.818
1982	1.581	1.374	0.918	1.310	1	1.124	1.488	0.971	0.807
1983	1.450	1.254	0.886	1.192	1	1.131	1.429	0.963	0.766
1984	1.482	1.277	0.983	1.248	1	1.137	1.380	0.973	0.817
1985	1.503	1.296	1.083	1.262	1	1.143	1.388	0.973	0.817
1986	1.594	1.374	1.224	1.302	1	1.150	1.442	0.971	0.809
1987	1.559	1.341	1.260	1.242	1	1.156	1.440	0.964	0.773
1988	1.547	1.328	1.177	1.225	1	1.163	1.427	0.963	0.767
1989	1.606	1.378	1.024	1.261	1	1.169	1.459	0.963	0.768
1990	1.762	1.507	0.975	1.361	1	1.176	1.576	0.962	0.764
1991	1.756	1.466	0.947	1.378	1	1.182	1.530	0.967	0.788
1992	1.805	1.465	0.927	1.366	1	1.189	1.567	0.962	0.762
1993	1.836	1.448	0.939	1.340	1	1.196	1.548	0.960	0.754
1994	1.892	1.450	0.963	1.340	1	1.202	1.510	0.963	0.766
1995	1.897	1.420	0.966	1.320	1	1.209	1.479	0.963	0.767
1996	2.002	1.476	1.028	1.339	1	1.216	1.482	0.964	0.771
1997	1.964	1.443	1.029	1.295	1	1.223	1.469	0.959	0.752
1998	1.810	1.294	0.944	1.212	1	1.229	1.460	0.950	0.711
1999	1.954	1.360	1.015	1.252	1	1.236	1.415	0.958	0.747
2000	2.030	1.380	1.054	1.280	1	1.243	1.416	0.961	0.757
2001	2.120	1.398	1.096	1.294	1	1.250	1.419	0.961	0.759
2002	2.199	1.407	1.132	1.326	1	1.257	1.420	0.964	0.771
2003	2.256	1.420	1.172	1.312	1	1.264	1.427	0.961	0.757
2004	2.299	1.441	1.219	1.347	1	1.271	1.423	0.964	0.772
2001	2.376	1.440	1.247	1.367	1	1.278	1.429	0.965	0.776
2005	2.370	1.432	1.247	1.376	1	1.286	1.423	0.965	0.779
2000	2.485	1.495	1.354	1.410	1	1.293	1.447	0.965	0.779
2007	2.530	1.517	1.405	1.503	1	1.300	1.422	0.900	0.833
2008	2.502	1.479	1.400	1.447	1	1.300	1.416	0.970	0.806
2009	2.302	1.479	1.387	1.380	1	1.307	1.417	0.963	0.808
2010	2.480	1.435	1.387	1.387	1	1.315	1.417	0.963	0.769
2011	2.559			1.367	1	1.322			
		1.458	1.471				1.395	0.972	0.812
2013	2.563	1.431	1.473	1.482	1	1.337	1.341	0.978	0.845
2014	2.593	1.420	1.491	1.346	1	1.344	1.407	0.957	0.744
2015	2.619	1.417	1.516	1.330	1	1.352	1.406	0.955	0.733

5.19 Sri Lanka

In 2014, the agriculture sector in Sri Lanka employed 27.1% (respectively 31.7%) of the male (respectively female) labor force and contributed 9.9% to the GDP. Rice is the main agricultural crop, accounting for 34% of total cultivated area. Tea is also an important product for the export market. Figure 5.19 reports estimated changes in agricultural productivity in Sri Lanka from 1961 to 2015. The index numbers used to construct panels (a) and in this figure are reported in Table 5.19.

Panel (a) in Figure 5.19 indicates that land and labor productivity fluctuated but generally increased over the sample period. In 2015, output per unit of land (respectively labor) was 85.9% (respectively 43.1%) higher than it had been in 1961. On the other hand, capital productivity fluctuated and generally fell over the sample period. In 2015, output per unit of capital was 16.9% lower than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 2.089 (respectively 3.596) while the area of land used for agricultural production increased only by a factor of 1.608.

Panel (b) in Figure 5.19 indicates that TFP in Sri Lankan agriculture was 33.6% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.342 \times 0.906 \times 0.812$ = 1.336

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 34.2% increase in TFP; (iv) lower technical efficiency (the OTEI component) led to a 9.4% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 18.8% fall in measured TFP.

Panel (c) in Figure 5.19 indicates that TFP in Sri Lanka in 2015 was 5.877 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 9.129 \times 0.808 \times 0.56$ = 5.877.

This decomposition indicates that (i) the production environment in Sri Lanka (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Sri Lanka were 9.129 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Sri Lanka were 19.2% less technically efficient in 2015 than Australian farmers had been in 1961.

							0.000		
/ear	Q/Land	Q/Lab.	Q/Cap.	TFPI	EI	TI	OSMEI	OTEI	SNI
961 962	1 1.067	1 1.035	1 0.853	1 1.023	1 1	1 1.006	1 1.043	1 0.993	0.98
963	0.912	1.046	0.764	1.025	1	1.000	1.054	0.989	0.90
964	0.936	1.074	0.755	1.060	1	1.017	1.022	1.006	1.01
965	0.856	0.988	0.681	0.965	1	1.023	1.010	0.980	0.95
966	0.857	0.993	0.598	0.960	1	1.028	1.062	0.962	0.91
967	0.926	1.075	0.579	1.041	1	1.034	1.131	0.965	0.92
968	0.938	1.100	0.532	1.037	1	1.040	1.165	0.953	0.89
969	0.931	1.076	0.478	1.049	1	1.046	1.150	0.959	0.90
970	0.981	1.116	0.456	1.074	1	1.052	1.163	0.961	0.91
971	0.957	1.075	0.407	1.027	1	1.057	1.154	0.948	0.88
972	0.940	1.038	0.424	1.008	1	1.063	1.136	0.946	0.88
973	0.937	1.015	0.432	0.982	1	1.069	1.126	0.938	0.86
974	1.006	1.071	0.472	1.048	1	1.075	1.115	0.960	0.91
975	1.042	1.088	0.497	1.094	1	1.081	1.119	0.970	0.93
976	1.032	1.072	0.504	1.062	1	1.087	1.126	0.958	0.90
977	1.042	1.078	0.525 0.576	1.058	1 1	1.093	1.125	0.955	0.90
978 979	1.084 1.272	1.116 1.227	0.576	1.081 1.190	1	1.100 1.106	1.157 1.206	0.951 0.966	0.89
979 980	1.337	1.262	0.704	1.212	1	1.112	1.200	0.900	0.92
980 981	1.298	1.202	0.704	1.176	1	1.112	1.153	0.971	0.93
982	1.263	1.128	0.709	1.102	1	1.124	1.139	0.955	0.90
983	1.408	1.246	0.833	1.213	1	1.131	1.178	0.972	0.93
984	1.339	1.169	0.925	1.128	1	1.137	1.096	0.970	0.93
985	1.388	1.197	1.017	1.157	1	1.143	1.102	0.975	0.94
986	1.390	1.187	1.087	1.152	1	1.150	1.119	0.967	0.92
987	1.205	1.018	1.009	0.985	1	1.156	1.050	0.937	0.86
988	1.283	1.070	1.105	1.037	1	1.163	1.058	0.949	0.88
989	1.200	0.988	1.079	0.959	1	1.169	1.035	0.930	0.85
990	1.314	1.068	1.272	1.065	1	1.176	1.005	0.969	0.93
991	1.254	1.008	1.254	1.004	1	1.182	1.007	0.949	0.88
992	1.209	0.962	1.271	0.957	1	1.189	0.964	0.946	0.88
993	1.330	1.036	1.452	1.018	1	1.196	0.984	0.957	0.90
994	1.413	1.092	1.478	1.070	1	1.202	0.994	0.967	0.92
995	1.449	1.111	1.222	1.094	1	1.209	1.028	0.962	0.91
996	1.300	0.990	1.158	0.975	1	1.216	1.014	0.929	0.85
997 998	1.325 1.376	1.005 1.037	1.244 1.172	0.992 1.010	1 1	1.223 1.229	1.015 1.118	0.932 0.906	0.85 0.81
990 999	1.423	1.073	1.172	1.010	1	1.229	1.118	0.900	0.81
.000	1.442	1.073	1.036	1.044	1	1.230	1.143	0.906	0.81
001	1.397	1.037	0.911	1.004	1	1.250	1.141	0.892	0.78
002	1.415	1.040	0.854	0.986	1	1.257	1.136	0.886	0.77
003	1.455	1.062	0.883	1.030	1	1.264	1.140	0.897	0.79
004	1.423	1.001	0.795	0.966	1	1.271	1.139	0.875	0.76
005	1.432	1.083	0.826	1.031	1	1.278	1.154	0.889	0.78
006	1.515	1.102	0.815	1.039	1	1.286	1.178	0.884	0.77
007	1.524	1.078	0.776	1.027	1	1.293	1.180	0.878	0.76
8008	1.567	1.194	0.831	1.088	1	1.300	1.192	0.891	0.78
009	1.574	1.152	0.777	1.085	1	1.307	1.195	0.887	0.78
010	1.673	1.267	0.832	1.213	1	1.315	1.228	0.913	0.82
011	1.546	1.211	0.775	1.125	1	1.322	1.203	0.893	0.79
012	1.604	1.227	0.765	1.189	1	1.329	1.209	0.908	0.81
013	1.747	1.350	0.822	1.333	1	1.337	1.247	0.932	0.85
2014	1.823	1.398	0.831	1.312	1	1.344	1.320	0.908	0.81

5.20 Thailand

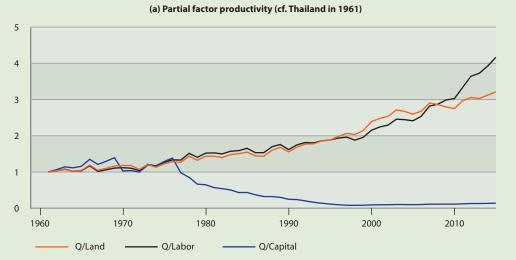
In 2014, the agriculture sector in Thailand employed 37.2% (respectively 32,9%) of the male (respectively female) labor force and contributed 10.5% to the GDP. Thailand is a successful exporter of rice. Other major commodities include rubber, sugar, fish, and fishery products. Figure 5.20 reports estimated changes in agricultural productivity in Thailand from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.20.

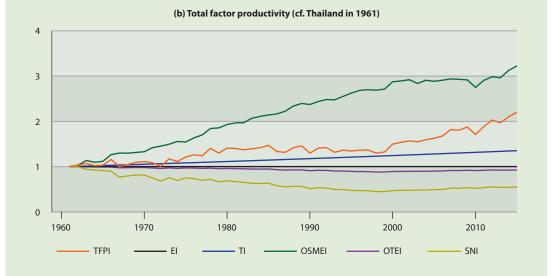
Panel (a) in Figure 5.20 indicates that land and labor productivity increased steadily over the sample period: in 2015, output per unit of land (respectively labor) was 3.21 (respectively 4.167) times higher than it had been in 1961. On the other hand, capital productivity fell significantly over the sample period. In 2015, output per unit of capital was 86% lower than it had been in 1961. Taken together, these results indicate that labor per hectare fell and capital per hectare increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.479 (respectively 44) while the area of land used for agricultural production increased by a factor of 1.92.

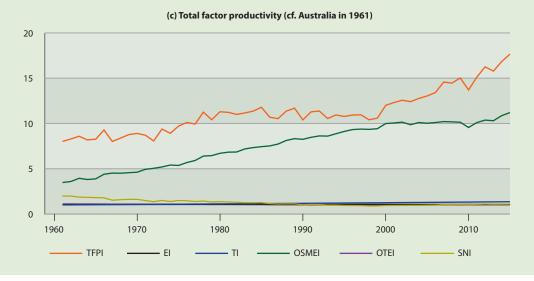
Panel (b) in Figure 5.20 indicates that TFP in Thai agriculture was 2.203 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 3.224 \times 0.922 \times 0.548$ = 2.203

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 3.224; (iv) lower technical efficiency (the OTEI component) led to a 7.8% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 45.2% fall in measured TFP. In case of Thailand, the increase in scale and mix efficiency can be partly attributed to a shift from crops into livestock (i.e., a more productive output mix).


Panel (c) in Figure 5.20 indicates that TFP in Thailand in 2015 was 17.657 times higher than TFP had been in Australia in 1961. The breakdown is as follows:


TFPI = EI × TI × OSMEI × OTEI × SNI = 1.053 × 1.352 × 11.201 × 1.018 × 1.088 = 17.657.


This decomposition indicates that (i) the production environment in Thailand (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Thailand were 11.201 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Thailand were 1.8% more technically efficient in 2015 than Australian farmers had been in 1961.

	IVITY CHANG		-						
Year 1961	Q/Land 1	Q/Lab. 1	Q/Cap. 1	TFPI 1	EI 1	TI	OSMEI 1	OTEI	SNI
1962	1.035	1.034	1.064	1.033	1	1.006	1.032	1	0.996
1963	1.068	1.078	1.142	1.071	1	1.011	1.134	0.994	0.939
1964	1.025	1.024	1.142	1.021	1	1.017	1.096	0.993	0.923
1965	1.043	1.024	1.159	1.021	1	1.023	1.116	0.991	0.91
1966	1.192	1.170	1.351	1.158	1	1.025	1.263	0.990	0.90
1967	1.047	1.018	1.209	0.999	1	1.020	1.205	0.990	0.76
1968	1.1047	1.062	1.209	1.045	1	1.040	1.299	0.972	0.79
1969	1.167	1.109	1.394	1.045	1	1.046	1.313	0.977	0.81
					1				
1970	1.180	1.119	1.031	1.110	1	1.052	1.328	0.979	0.81
1971	1.179	1.105	1.041	1.085		1.057	1.418	0.969	
1972	1.071	1.039	0.999	1.006	1	1.063	1.452	0.957	0.68
1973	1.206	1.211	1.189	1.170	1	1.069	1.495	0.971	0.75
1974	1.132	1.170	1.172	1.112	1	1.075	1.555	0.960	0.69
1975	1.223	1.267	1.291	1.211	1	1.081	1.542	0.970	0.74
1976	1.288	1.337	1.386	1.261	1	1.087	1.635	0.967	0.73
1977	1.270	1.329	0.979	1.239	1	1.093	1.700	0.960	0.69
1978	1.436	1.516	0.852	1.404	1	1.100	1.842	0.965	0.71
1979	1.326	1.406	0.665	1.299	1	1.106	1.855	0.954	0.66
1980	1.435	1.521	0.648	1.409	1	1.112	1.929	0.958	0.68
1981	1.435	1.528	0.572	1.401	1	1.118	1.965	0.955	0.66
1982	1.400	1.501	0.540	1.372	1	1.124	1.970	0.951	0.65
1983	1.480	1.573	0.505	1.392	1	1.131	2.068	0.946	0.62
1984	1.508	1.591	0.432	1.417	1	1.137	2.110	0.945	0.62
1985	1.550	1.654	0.436	1.471	1	1.143	2.140	0.947	0.63
1986	1.444	1.534	0.370	1.334	1	1.150	2.164	0.931	0.57
1987	1.434	1.534	0.323	1.313	1	1.156	2.222	0.924	0.55
1988	1.603	1.698	0.322	1.417	1	1.163	2.337	0.927	0.56
1989	1.682	1.761	0.300	1.458	1	1.169	2.394	0.927	0.56
1990	1.556	1.618	0.247	1.297	1	1.176	2.373	0.909	0.51
1991	1.687	1.749	0.239	1.408	1	1.182	2.438	0.917	0.53
1992	1.771	1.814	0.203	1.419	1	1.189	2.482	0.915	0.52
1993	1.779	1.803	0.165	1.315	1	1.196	2.476	0.901	0.49
1994	1.856	1.861	0.139	1.365	1	1.202	2.551	0.902	0.49
1995	1.882	1.884	0.115	1.344	1	1.209	2.624	0.893	0.47
1996	1.981	1.937	0.097	1.363	1	1.216	2.683	0.891	0.46
1997	2.067	1.963	0.083	1.367	1	1.223	2.699	0.889	0.46
1998	2.037	1.881	0.080	1.298	1	1.229	2.689	0.879	0.44
1999	2.144	1.958	0.084	1.321	1	1.236	2.712	0.880	0.44
2000	2.391	2.152	0.092	1.497	1	1.243	2.874	0.891	0.47
2001	2.480	2.244	0.096	1.536	1	1.250	2.893	0.894	0.47
2002	2.537	2.295	0.097	1.567	1	1.257	2.920	0.895	0.47
2003	2.715	2.459	0.104	1.548	1	1.264	2.838	0.896	0.48
2003	2.673	2.445	0.102	1.592	1	1.271	2.907	0.896	0.48
2004	2.598	2.414	0.099	1.626	1	1.278	2.885	0.900	0.49
2005	2.676	2.538	0.103	1.673	1	1.286	2.908	0.903	0.49
2000	2.905	2.338	0.103	1.817	1	1.293	2.908	0.903	0.52
2007	2.903	2.821	0.112	1.804	1	1.300	2.938	0.914	0.52
2008	2.798	2.871		1.875	1	1.307		0.912	0.51
			0.114				2.916		
2010	2.750	3.027	0.113	1.709	1	1.315	2.750	0.912	0.51
2011	2.967	3.336	0.122	1.886	1	1.322	2.906	0.918	0.53
2012	3.058	3.644	0.130	2.028	1	1.329	2.984	0.924	0.55
2013	3.028	3.726	0.131	1.969	1	1.337	2.964	0.920	0.54
2014	3.121	3.920	0.135	2.101	1	1.344	3.127	0.921	0.54
2015	3.210	4 167	0.140	2,203	1	1 352	3.224	0 922	0 54

4.167

0.140

2.203 1

1.352

3.224

0.922

0.548

3.210

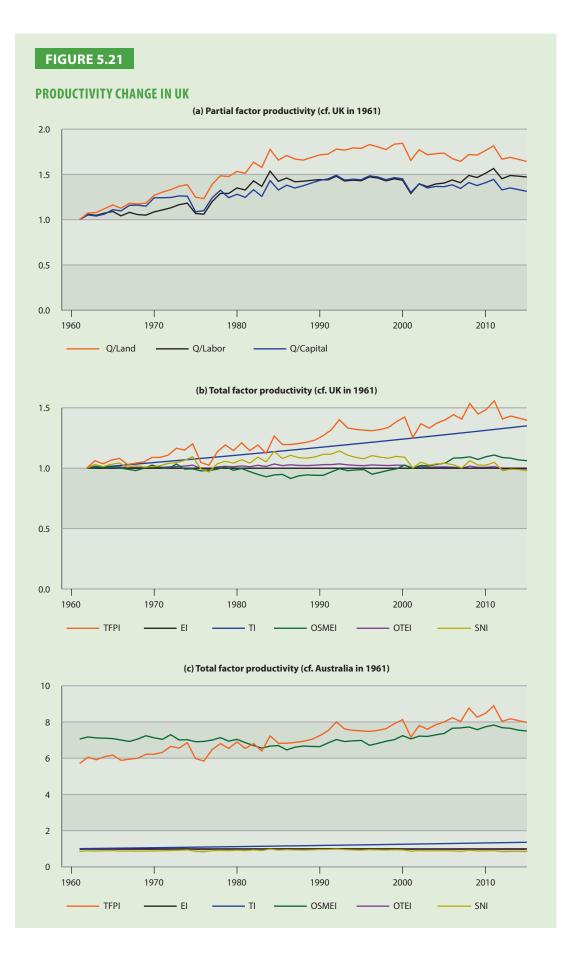
2015

5.21 UK

In 2014, the agriculture sector in the UK employed 1.7% (respectively 0.7%) of the male (respectively female) labor force and contributed 0.6% to the GDP. Most cropping activity is concentrated in East Anglia. Most livestock activity is concentrated in the South West. The average age of UK farmers is close to 60, as low farm incomes and high land prices have discouraged younger generations from joining the industry. Figure 5.21 reports estimated changes in agricultural productivity in the UK from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.21.

Panel (a) in Figure 5.21 indicates that land and labor productivity increased steadily over the sample period. In 2015, output per unit of land (respectively labor) was 64.2% (respectively 47.1%) higher than it had been in 1961. Capital productivity also increased steadily over the sample period. In 2015, output per unit of capital was 31.2% higher than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of the raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production fell by 2.8% (respectively increased by 8.9%) while the area of land used for agricultural production fell by 13%.

Panel (b) in Figure 5.21 indicates that TFP in UK agriculture was 39.9% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.063 \times 0.994 \times 0.980$ = 1.399

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 6.3% increase in TFP; (iv) changes in technical efficiency (the OTEI component) had a negligible impact on TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 2% fall in measured TFP.

Panel (c) in Figure 5.21 indicates that TFP in the UK in 2015 was 7.973 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

TFPI = EI × TI × OSMEI × OTEI × SNI = $0.986 \times 1.352 \times 7.499 \times 0.954 \times 0.836$ = 7.973.

This decomposition indicates that (i) the production environment in the UK (wet temperate) is 1.4% less productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in the UK were 7.499 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in the U.K. were 4.6% less technically efficient in 2015 than Australian farmers had been in 1961.

TABLE 5.21

PRODUCTIVITY CHANGE IN UK (CF. UK IN 1961)

Veer	Q/Land		O/Con		EI	TI	OCMEL	OTEL	SNI
Year	Q/Land 1	Q/Lab. 1	Q/Cap. 1	TFPI 1	1	1	OSMEI 1	OTEI 1	5NI 1
1961	1.073	1.058		1.062	1		1.016		1.031
1962			1.051			1.006		1.009	
1963	1.079	1.047	1.039	1.037	1	1.011	1.009	1.004	1.013
1964	1.120	1.071	1.061	1.067	1	1.017	1.007	1.009	1.033
1965	1.161	1.090	1.110	1.082	1	1.023	1.003	1.012	1.043
1966	1.125	1.041	1.096	1.031	1	1.028	0.992	1.002	1.008
1967	1.180	1.080	1.157	1.042	1	1.034	0.981	1.006	1.022
1968	1.173	1.055	1.160	1.052	1	1.040	0.999	1.003	1.009
1969	1.182	1.049	1.148	1.090	1	1.046	1.026	1.004	1.012
1970	1.269	1.085	1.241	1.090	1	1.052	1.009	1.006	1.021
1971	1.303	1.107	1.242	1.109	1	1.057	0.997	1.011	1.040
1972	1.331	1.130	1.245	1.166	1	1.063	1.034	1.013	1.047
1973	1.369	1.164	1.262	1.150	1	1.069	0.993	1.018	1.065
1974	1.386	1.182	1.259	1.202	1	1.075	0.995	1.025	1.096
1975	1.248	1.067	1.086	1.048	1	1.081	0.978	0.998	0.993
1976	1.232	1.060	1.098	1.025	1	1.087	0.981	0.991	0.970
1977	1.390	1.199	1.240	1.135	1	1.093	0.992	1.010	1.037
1978	1.485	1.289	1.324	1.193	1	1.100	1.011	1.016	1.057
1979	1.476	1.289	1.242	1.147	1	1.106	0.983	1.012	1.042
1980	1.532	1.350	1.280	1.210	1	1.112	0.997	1.019	1.071
1981	1.513	1.328	1.246	1.146	1	1.118	0.972	1.012	1.042
1982	1.635	1.428	1.330	1.193	1	1.124	0.948	1.024	1.092
1983	1.576	1.367	1.257	1.122	1	1.131	0.929	1.015	1.053
1984	1.776	1.535	1.431	1.267	1	1.137	0.944	1.035	1.140
1985	1.657	1.424	1.328	1.197	1	1.143	0.949	1.021	1.080
1986	1.709	1.460	1.380	1.197	1	1.150	0.915	1.028	1.107
1987	1.669	1.418	1.350	1.205	1	1.156	0.936	1.023	1.088
1988	1.657	1.424	1.374	1.216	1	1.163	0.944	1.022	1.083
1989	1.687	1.434	1.404	1.234	1	1.169	0.942	1.025	1.094
1990	1.715	1.442	1.433	1.271	1	1.176	0.941	1.030	1.116
1991	1.724	1.439	1.450	1.319	1	1.182	0.969	1.030	1.117
1992	1.779	1.480	1.491	1.404	1	1.189	0.996	1.036	1.144
1993	1.767	1.426	1.437	1.335	1	1.196	0.980	1.028	1.108
1994	1.792	1.436	1.446	1.322	1	1.202	0.986	1.024	1.090
1995	1.787	1.429	1.440	1.317	1	1.209	0.989	1.021	1.079
1996	1.829	1.472	1.484	1.317	1	1.216	0.950	1.027	1.105
1997	1.805	1.460	1.471	1.321	1	1.223	0.966	1.027	1.092
1998	1.774	1.428	1.441	1.338	1	1.229	0.983	1.024	1.092
1999	1.834	1.451	1.464	1.386	1	1.236	0.995	1.022	1.098
2000	1.844	1.436	1.450	1.425	1	1.243	1.026	1.020	1.090
2000	1.654	1.288	1.300	1.256	1	1.243	1.020	1.024	1.003
2001	1.772	1.396	1.395	1.369	1	1.257	1.023	1.014	
									1.050
2003	1.717	1.364	1.350	1.333	1	1.264	1.020	1.007	1.026
2004	1.728	1.393	1.366	1.376	1	1.271	1.033	1.010	1.037
2005	1.735	1.403	1.364	1.403	1	1.278	1.043	1.011	1.040
2006	1.674	1.437	1.385	1.445	1	1.286	1.084	1.008	1.028
2007	1.643	1.407	1.344	1.407	1	1.293	1.087	1.000	1.001
2008	1.719	1.488	1.410	1.537	1	1.300	1.094	1.017	1.063
2009	1.713	1.465	1.376	1.450	1	1.307	1.073	1.007	1.026
2010	1.762	1.511	1.407	1.487	1	1.315	1.096	1.007	1.025
2011	1.815	1.564	1.445	1.560	1	1.322	1.109	1.014	1.049
2012	1.667	1.451	1.328	1.409	1	1.329	1.089	0.994	0.979
2013	1.688	1.487	1.350	1.433	1	1.337	1.083	0.998	0.992
2014	1.666	1.480	1.331	1.416	1	1.344	1.069	0.997	0.989
2015	1.642	1.471	1.312	1.399	1	1.352	1.063	0.994	0.980

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 97

5.22 USA

Agriculture is an important industry in the USA. In 2014, the sector employed 2.1% (respectively 0.8%) of the male (respectively female) labor force and contributed 1.2% to the GDP. Most agricultural activity is concentrated in the Great Plains (in the center) and the Corn Belt (around the Great Lakes). Major crops include corn, soybeans, wheat, potatoes, and sugar beets. Figure 5.22 reports estimated changes in agricultural productivity in the USA from 1961 to 2015. The index numbers used to construct panels (a) and (b) in this figure are reported in Table 5.22.

Panel (a) in Figure 5.22 indicates that land and labor productivity increased steadily over the sample period: in 2015, output per unit of land (respectively labor) was 2.599 (respectively 2.224) times higher than it had been in 1961. Capital productivity also increased steadily over the sample period. In 2015, output per unit of capital was 2.185 times higher than it had been in 1961. Taken together, these results indicate that labor per hectare and capital per hectare both increased over the sample period. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by 6.6% (respectively 8.5%) while the area of land used for agricultural production fell by 8.8%.

Panel (b) in Figure 5.22 indicates that TFP in USA agriculture was 82.5% higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 1.193 \times 1.021 \times 1.108$ = 1.825

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) led to a 19.3% increase in TFP; (iv) higher technical efficiency (the OTEI component) led to a 2.1% increase in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 10.8% increase in measured TFP.

Panel (c) in Figure 5.22 indicates that TFP in the USA in 2015 was 11.19 times higher than TFP had been in Australia in 1961. The breakdown is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 7.068 \times 1.027 \times 1.14$ = 11.19.

This decomposition indicates that (i) the production environment in the USA is the same as the production environment in Australia (dry temperate); (ii) the agricultural pro- duction technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in the USA were 7.068 times more scale and mix efficient in 2015 than Australian farmers had been in 1961, (iv) farmers in the USA were 2.7% more technically efficient in 2015 than Australian farmers had been in 1961.

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 99

TABLE 5.22

PRODUCTIVITY CHANGE IN USA (CF. USA IN 1961)

	ITVITY CHANG			901)					
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1	1	1	1	1	1	1	1	1
1962	1.015	1.005	1.007	0.989	1	1.006	0.994	0.998	0.991
1963	1.062	1.045	1.026	1.006	1	1.011	0.994	1.000	1.000
1964	1.054	1.031	1.013	0.985	1	1.017	0.990	0.996	0.983
1965	1.124	1.094	1.072	1.026	1	1.023	0.998	1.001	1.005
1966	1.118	1.088	0.930	0.938	1	1.028	0.960	0.991	0.959
1967	1.166	1.138	0.970	0.962	1	1.034	0.961	0.994	0.974
1968	1.204	1.180	1.020	1.000	1	1.040	0.973	0.998	0.990
1969	1.215	1.195	1.048	0.998	1	1.046	0.970	0.997	0.986
1970	1.184	1.163	1.019	0.955	1	1.052	0.954	0.991	0.960
1971	1.313	1.275	1.149	1.062	1	1.057	0.981	1.004	1.019
1972	1.313	1.262	1.146	1.059	1	1.063	0.978	1.003	1.015
1973	1.370	1.302	1.193	1.066	1	1.069	0.965	1.006	1.027
1974	1.298	1.220	1.128	1.042	1	1.075	0.960	1.002	1.008
1975	1.425	1.328	1.262	1.094	1	1.081	0.956	1.010	1.047
1976	1.442	1.333	1.278	1.088	1	1.087	0.967	1.006	1.029
1977	1.536	1.407	1.361	1.177	1	1.093	1.009	1.011	1.055
1978	1.552	1.401	1.396	1.172	1	1.100	1.013	1.009	1.043
1979	1.678	1.501	1.540	1.253	1	1.106	1.041	1.015	1.073
1980	1.557	1.382	1.490	1.176	1	1.112	1.018	1.007	1.031
1981	1.746	1.543	1.670	1.362	1	1.118	1.073	1.022	1.111
1982	1.737	1.541	1.675	1.434	1	1.124	1.111	1.023	1.121
1983	1.387	1.225	1.337	1.069	1	1.131	1.010	0.988	0.948
1984	1.682	1.480	1.621	1.296	1	1.137	1.065	1.012	1.057
1985	1.774	1.554	1.710	1.412	1	1.143	1.118	1.017	1.087
1986	1.659	1.448	1.600	1.343	1	1.150	1.117	1.008	1.037
1987	1.687	1.451	1.576	1.324	1	1.156	1.120	1.004	1.019
1988	1.502	1.286	1.433	1.186	1	1.163	1.092	0.987	0.945
1989	1.696	1.446	1.618	1.316	1	1.169	1.125	1.000	1.000
1990	1.790	1.524	1.745	1.397	1	1.176	1.133	1.008	1.040
1991	1.758	1.505	1.751	1.381	1	1.182	1.128	1.006	1.029
1992	1.950	1.674	1.936	1.529	1	1.189	1.157	1.018	1.092
1993	1.740	1.495	1.717	1.337	1	1.196	1.097	1.003	1.016
1994	2.099	1.807	2.063	1.636	1	1.202	1.170	1.025	1.135
1995	1.877	1.621	1.841	1.438	1	1.209	1.114	1.011	1.055
1996	2.054	1.766	1.996	1.564	1	1.216	1.139	1.021	1.107
1997	2.138	1.840	2.070	1.624	1	1.223	1.156	1.023	1.123
1998	2.128	1.838	2.014	1.607	1	1.229	1.149	1.022	1.113
1999	2.166	1.877	2.047	1.634	1	1.236	1.158	1.022	1.116
2000	2.213	1.928	2.049	1.690	1	1.243	1.181	1.024	1.124
2000	2.167	1.887	2.009	1.629	1	1.250	1.165	1.019	1.098
2002	2.121	1.836	1.917	1.595	1	1.257	1.159	1.015	1.078
2002	2.121	1.895	1.979	1.602	1	1.264	1.151	1.017	1.084
2003	2.395	2.064	2.156	1.778	1	1.271	1.191	1.027	1.144
2004	2.338	2.004	2.106	1.737	1	1.278	1.184	1.027	1.121
2005	2.283	1.955	2.044	1.688	1	1.286	1.169	1.020	1.102
2000	2.285	2.056	2.044	1.762	1	1.293	1.181	1.020	1.102
2007	2.382	2.038	2.108	1.837	1	1.295	1.101	1.024	1.127
2008									
	2.445	2.092	2.148	1.893	1	1.307	1.225	1.028	1.150
2010	2.509	2.138	2.196	1.904	1	1.315	1.229	1.027	1.147
2011	2.469	2.086	2.099	1.790	1	1.322	1.193	1.021	1.111
2012	2.425	2.070	2.082	1.741		1.329	1.178	1.018	1.092
2013	2.582	2.191	2.201	1.845	1	1.337	1.203	1.023	1.121
2014	2.581	2.206	2.213	1.853	1	1.344	1.205	1.023	1.118
2015	2.599	2.224	2.185	1.825	1	1.352	1.193	1.021	1.108

5.23 Vietnam

In 2014, the agriculture sector in Vietnam employed 44.7% (respectively 48.1%) of the male (respectively female) labor force and contributed 18.1% to the GDP. Agricultural commodities account for approximately one third of all exports from Vietnam. Vietnam is the world's second largest exporter of rice. Figure 5.23 reports estimated changes in agricultural productivity in Vietnam from 1961 to 2015. The index numbers used to construct panels and (b) in this figure are reported in Table 5.23.

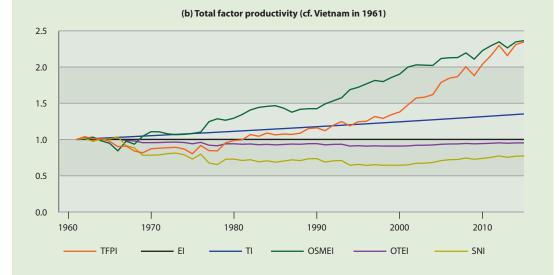
Panel (a) in Figure 5.23 indicates that land and labor productivity increased steadily since the end of the Vietnam war in 1975. In 2015, output per unit of land (respectively labor) was 3.841 (respectively 4.142) times higher than it had been in 1975. On the other hand, capital productivity fell significantly since the end of the war. I 2015, output per unit of capital was 89.5% lower than it had been in 1975. Taken together, these results indicate that labor per hectare fell and capital per hectare increased significantly after the war. An inspection of raw data reveals that this was because the amount of labor (respectively capital) used in agricultural production increased by a factor of 1.553 (respectively 61.87) while the area of land used for agricultural production increased by a factor of 1.674.

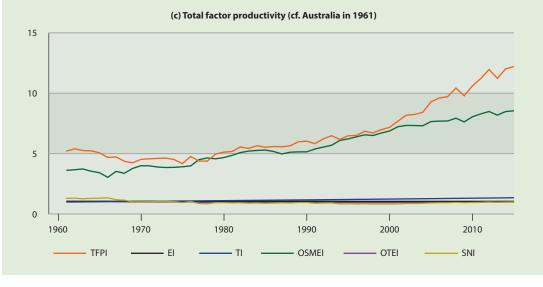
Panel (b) in Figure 5.23 indicates that TFP in Vietnamese agriculture was 2.347 times higher in 2015 than it had been in 1961. The breakdown of this increase is as follows:

 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1 \times 1.352 \times 2.364 \times 0.952 \times 0.771$ = 2.347

This decomposition indicates that, over the sample period, (i) changes in the production environment (the EI component) had no impact on TFP; (ii) technical progress (the TI component) led to a 35.2% increase in TFP; (iii) improvements in scale and mix efficiency (the OSMEI component) increased TFP by a factor of 2.364; (iv) lower technical efficiency (the OTEI component) led to a 4.8% fall in TFP; and (v) changes in omitted variables and other sources of statistical noise (the SNI component) accounted for a 22.9% fall in measured TFP.

Panel (c) in Figure 5.23 indicates that TFP in Vietnam in 2015 was 12.215 times higher than TFP had been in Australia in 1961. The breakdown is as follows:


 $TFPI = EI \times TI \times OSMEI \times OTEI \times SNI$ $= 1.053 \times 1.352 \times 8.55 \times 1.001 \times 1.003$ = 12.215.


This decomposition indicates that (i) the production environment in Vietnam (wet tropical/ subtropical) is 5.3% more productive than the production environment in Australia (dry temperate); (ii) the agricultural production technologies available in 2015 were 35.2% more productive than the technologies available in 1961; (iii) farmers in Vietnam were 8.55 times more scale and mix efficient in 2015 than Australian farmers had been in 1961; and (iv) farmers in Vietnam were less than 1% more technically efficient in 2015 than Australian farmers had been in 1961.

PRODUCTIVITY CHANGE IN VIETNAM

102 AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019

	IVITY CHANG		-						
Year	Q/Land	Q/Lab.	Q/Cap.	TFPI	El	TI	OSMEI	OTEI	SNI
1961	1 062	1	1 052	1 0.29	1 1	1	1 015	1 1.002	1.014
1962 1963	1.063 1.061	1.037	1.052	1.038 1.010		1.006 1.011	1.015		0.972
1963	1.075	1.009 0.998	1.038 1.036	1.010	1 1	1.011	1.032 0.981	0.996 1.001	1.002
1904	1.073	0.998	1.011	0.975	1	1.017	0.981	1.001	1.00
1966	0.991	0.878	0.932	0.975	1	1.023	0.842	1.005	1.03
967	1.039	0.902	0.932	0.900	1	1.028	0.976	0.985	0.91
968	0.977	0.831	0.902	0.840	1	1.040	0.935	0.979	0.88
1969	1.005	0.839	0.920	0.815	1	1.046	1.044	0.975	0.78
1970	1.005	0.902	0.996	0.870	1	1.052	1.107	0.955	0.78
1971	1.124	0.902	1.010	0.879	1	1.052	1.105	0.950	0.78
1972	1.142	0.900	1.016	0.885	1	1.063	1.077	0.961	0.804
1973	1.162	0.901	1.025	0.891	1	1.069	1.066	0.963	0.81
1974	1.158	0.883	1.012	0.867	1	1.075	1.070	0.957	0.78
1975	1.102	0.823	0.951	0.803	1	1.081	1.083	0.940	0.72
976	1.227	0.927	1.081	0.916	1	1.087	1.102	0.959	0.79
977	1.180	0.885	0.385	0.845	1	1.093	1.246	0.921	0.67
978	1.177	0.868	0.236	0.841	1	1.100	1.285	0.912	0.65
979	1.310	0.948	0.189	0.953	1	1.106	1.265	0.939	0.72
980	1.381	0.979	0.156	0.984	1	1.112	1.293	0.940	0.72
981	1.440	1.001	0.154	0.995	1	1.118	1.344	0.933	0.70
982	1.593	1.084	0.162	1.067	1	1.124	1.408	0.937	0.72
983	1.617	1.078	0.156	1.044	1	1.131	1.442	0.927	0.69
984	1.719	1.122	0.158	1.088	1	1.137	1.457	0.932	0.70
985	1.782	1.111	0.151	1.063	1	1.143	1.466	0.925	0.68
986	1.850	1.124	0.211	1.075	1	1.150	1.432	0.931	0.70
987	1.846	1.095	0.218	1.070	1	1.156	1.376	0.936	0.71
988	1.960	1.138	0.233	1.086	1	1.163	1.416	0.933	0.70
989	2.104	1.198	0.254	1.150	1	1.169	1.424	0.941	0.73
990	2.153	1.207	0.229	1.160	1	1.176	1.424	0.942	0.73
991	2.188	1.211	0.166	1.120	1	1.182	1.490	0.925	0.68
992	2.278	1.291	0.169	1.197	1	1.189	1.534	0.932	0.70
993	2.389	1.345	0.147	1.247	1	1.196	1.575	0.933	0.70
994	2.485	1.390	0.079	1.187	1	1.202	1.687	0.909	0.64
995	2.662	1.459	0.077	1.245	1	1.209	1.720	0.913	0.65
996	2.604	1.534	0.073	1.251	1	1.216	1.768	0.907	0.64
997	2.708	1.616	0.073	1.316	1	1.223	1.815	0.911	0.65
998	2.740	1.667	0.071	1.291	1	1.229	1.799	0.908	0.64
999	2.832	1.790	0.065	1.342	1	1.236	1.856	0.908	0.64
2000	2.883	1.896	0.062	1.379	1	1.243	1.901	0.908	0.64
2001	2.748	1.946	0.064	1.477	1	1.250	1.999	0.911	0.64
2002	2.967	2.090	0.068	1.572	1	1.257	2.030	0.919	0.67
2003	3.073	2.179	0.071	1.584	1	1.264	2.026	0.920	0.67
2004	3.168	2.304	0.074	1.618	1	1.271	2.022	0.924	0.68
2005	3.166	2.360	0.075	1.787	1	1.278	2.118	0.933	0.70
2006	3.268	2.440	0.077	1.846	1	1.286	2.128	0.937	0.72
2007	3.426	2.552	0.080	1.867	1	1.293	2.131	0.938	0.72
2008	3.501	2.653	0.082	2.004	1	1.300	2.195	0.944	0.74
2009	3.532	2.688	0.082	1.881	1	1.307	2.110	0.939	0.72
2010	3.483	2.770	0.084	2.039	1	1.315	2.228	0.943	0.73
2011	3.643	2.898	0.087	2.156	1	1.322	2.293	0.947	0.75
2012	3.922	3.126	0.093	2.299	1	1.329	2.348	0.953	0.77
2013	3.948	3.162	0.093	2.159	1	1.337	2.265	0.947	0.75
2014	4.088	3.281	0.096	2.308	1	1.344	2.346	0.952	0.76
2015	4 233	3 409	0 0 0 0	2 3 4 7	1	1 3 5 2	2 364	0 952	0.77

2015

4.233

3.409

0.099

2.347 1

1.352

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 | 103

0.952

0.771

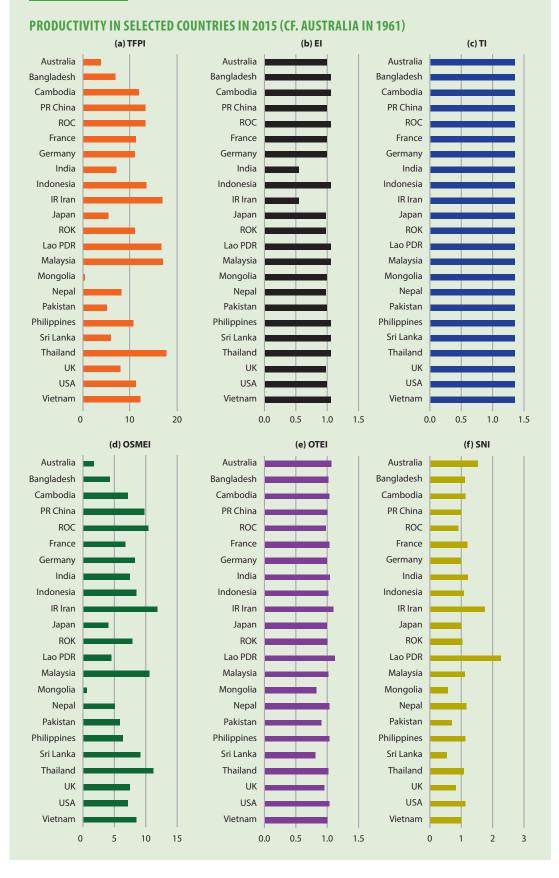
2.364

5.24 Summary

The main results are summarized in Figure 5.24. This figure presents a snapshot of agricultural productivity in 23 countries in 2015. The index numbers used to construct this figure are reported in Table 5.24. These index numbers have been discussed previously. For example, the index numbers reported in the first (respectively last) row of Table 5.24 were reported and discussed at the end of Section 5.1 (respectively 5.23).

Panel (a) in Figure 5.24 indicates that, in 2015, the most productive farmers were in Thailand (on average, these farmers were 17.657 times more productive than farmers in Australia had been in 1961), Malaysia (17.088 times more productive), IR Iran (16.865 times more productive), and the Lao PDR (16.697 times more productive). The least productive farmers were in Mongolia (only 37.9% as productive as farmers in Australia had been in 1961) and Australia (only 3.846 times more productive than they had been in 1961).

Panel (b) in Figure 5.24 indicates that farmers in India and IR Iran operated in a dry tropical/ subtropical production environment that was 45.3% less productive than the dry temperate production environment in Australia. On the other hand, farmers in Bangladesh, Cambodia, Indonesia, the Lao PDR, Malaysia, the Philippines, the ROC, Sri Lanka, Thailand, and Vietnam operated in a wet tropical/subtropical production environment that was 5.3% more productive than the production environment in Australia.


Panel (c) in Figure 5.24 indicates that, between 1961 and 2015, technical progress provided for a 35.2% increase in agricultural productivity in every country.

Panel (d) in Figure 5.24 indicates that, in 2015, the most scale and mix efficient farmers were in IR Iran (on average, these farmers were 11.822 times more scale and mix efficient than farmers in Australia had been in 1961), Thailand (11.201 times more scale and mix efficient), Malaysia (10.637 times more scale and mix efficient) and the ROC (10.516 times more scale and mix efficient). The least scale and mix efficient farmers were in Mongolia (only 58.8% as scale and mix efficient as farmers in Australia had been in 1961) and Australia (only 1.722 times more scale and mix efficient than they had been in 1961). Observe that the pattern of variation in panel (d) is similar to the pattern of variation in panel (a). This indicates that scale and mix efficiency change has been the main driver of cross-sectional variations in agricultural productivity.

Panel (e) in Figure 5.24 indicates that, in 2015, the most technically efficient farmers were in the Lao PDR (on average, these farmers were 11.6% more technically efficient than farmers in Australia had been in 1961), IR Iran (9.2% more technically efficient) and Australia (7.5% more technically efficient). The least technically efficient farmers were in Sri Lanka (only 80.8% as technically efficient as farmers in Australia had been in 1961), and Mongolia (only 82.3% as technically efficient).

Panel (f) in Figure 5.24 indicates that, in some cases, significant differences in agricultural productivity can be attributed to omitted variables and other sources of statistical noise. The problem is most apparent in the Lao PDR, IR Iran, Sri Lanka, Mongolia, and Pakistan.

FIGURE 5.24

AGRICULTURAL PRODUCTIVITY IN ASIA: MEASURES AND PERSPECTIVES 2019 | 105

TABLE 5.24						
PRODUCTIVITY	IN SELECTED C	OUNTRIES IN 20)15 (CF. AUSTR	ALIA IN 1961)		
Year	TFPI	El	ті	OSMEI	OTEI	SNI
Australia	3.846	1	1.352	1.722	1.075	1.537
Bangladesh	6.888	1.053	1.352	4.269	1.022	1.109
Cambodia	11.928	1.053	1.352	7.171	1.027	1.138
PR China	13.330	1	1.352	9.789	1.001	1.006
ROC	13.319	1.053	1.352	10.516	0.977	0.911
France	11.275	1	1.352	6.682	1.037	1.203
Germany	11.070	1	1.352	8.277	0.998	0.991
India	7.060	0.547	1.352	7.526	1.040	1.221
Indonesia	13.424	1.053	1.352	8.589	1.017	1.080
IR Iran	16.865	0.547	1.352	11.822	1.092	1.768
Japan	5.351	0.986	1.352	4.008	1.000	1.001
ROK	11.037	0.986	1.352	7.841	1.010	1.046
Lao PDR	16.697	1.053	1.352	4.613	1.116	2.279
Malaysia	17.088	1.053	1.352	10.637	1.021	1.105
Mongolia	0.379	1	1.352	0.588	0.823	0.580
Nepal	8.043	0.986	1.352	5.066	1.030	1.156
Pakistan	5.015	1	1.352	5.884	0.898	0.702
Philippines	10.630	1.053	1.352	6.313	1.029	1.150
Sri Lanka	5.877	1.053	1.352	9.129	0.808	0.560
Thailand	17.657	1.053	1.352	11.201	1.018	1.088
UK	7.973	0.986	1.352	7.499	0.954	0.836
USA	11.190	1	1.352	7.068	1.027	1.140
Vietnam	12.215	1.053	1.352	8.550	1.001	1.003

CHAPTER 6 MONITORING AGRICULTURAL PRODUCTIVITY CHANGE IN ASIA

This section discusses some of the issues and challenges involved in monitoring agricultural productivity change in general. It also makes some specific recommendations aimed at improving agricultural productivity measurement and analysis in Asia.

6.1 Issues and Challenges

Monitoring agricultural productivity change is a matter of measuring output and input change. The main challenge to measuring output and input change (and therefore productivity change) is the collection of accurate data. Not only must data be accurate, they must be collected at a level that is useful for policymaking. The FAO data used in this project is generally too inaccurate and highly aggregated for good farm-level policy work. Before collecting data, analysts must be careful to define the following:

- The level of analysis: Productivity measurement is ultimately aimed at measuring the performance of specific decisionmakers (e.g., farm managers, or government ministers). Decisionmakers at different levels (e.g., farm level, sector level) make decisions about different variables (e.g., farm managers make decisions concerning farm-level inputs of seed and pesticides, while government ministers make decisions about fertilizer subsidies and the building of dams). Arguably the most useful data for monitoring and analyzing agricultural productivity change is farm-level data.
- 2. The variables involved in agriculture: It is generally possible to divide the variables involved in the agricultural production process into those that are chosen by managers and those that are not. Variables that are chosen by managers can be further subdivided into inputs and outputs. Those that are never chosen by managers should be viewed as environmental variables (e.g., rainfall). Monitoring agricultural productivity change requires data on outputs and inputs. Analyzing agricultural productivity change may also require data on other variables that affect farmers' decision-making (e.g., prices, and government policy).
- 3. The variables of interest: Productivity is a measure of output volume (or quantity) divided by a measure of input volume. However, in the business literature, the term 'productivity' is sometimes used to refer to measures of output value (e.g., revenue, and value added) divided by measures of input value (e.g., cost). On the other hand, in productivity literature, the term 'productivity' is often used to refer to a combination of technical progress and technical efficiency improvement (e.g., [3]). All of these variables (i.e., revenue, value added, cost, technical progress, and technical efficiency) are of interest to policymakers. However, except in restrictive special cases, they are not measures of productivity. Indeed, increases in some of these variables (e.g., revenue) may

be associated with decreases in productivity. Monitoring productivity change must be preceded by a very clear definition of the term productivity.

6.2 Recommendations

To improve agricultural productivity measurement and analysis in the Asian region, the research team recommends that the APO should do the following:

- 1. Work with experienced statistical agencies (e.g., the Economic Research Service of the U.S. Department of Agriculture, and the Australian Bureau of Agricultural and Resource Economics and Sciences) to develop a survey questionnaire that can be used to collect farm-level data for purposes of agricultural productivity analysis. First priority should be given to collecting volume (i.e., quantity) data on all variables that are physically involved in the production process (i.e., inputs, outputs, and characteristics of the production environment). Second priority should be given to collecting data on uput and input prices or values (prices can be obtained by dividing values by volumes). Third priority should be given to collecting data on technologies (i.e., the techniques that farmers use to transform inputs into outputs), the personal characteristics of farm managers (e.g., age, education, and gender) and any government initiatives that are likely to have influenced the farmers' decision-making (e.g., new regulations governing the use of pesticides).
- 2. Work with appropriate statistical agencies in APO member countries to conduct a comprehensive farm-level survey in each country on a regular basis (e.g., once every three years). Care should be taken to minimize both non-sampling and sampling errors. Non-sampling errors can be minimized by working with local producer groups; and by using a good questionnaire, well-trained interviewers, and an up-to-date sampling frame. Sampling errors can be reduced by increasing the sample size and by using an appropriate sampling design (e.g., stratified random sampling, and cluster sampling).
- 3. Use primary and secondary data to measure and analyze measures of partial and total factor productivity at the farm level. The primary aim of the analysis should be to identify (a) the effects of changes in climate, public infrastructure, and other environmental variables on plot- and/or farm-level productivity; (b) the effects of research and development expenditure on the discovery of new commodity- and environment- specific production technologies (e.g., new techniques for producing almonds in a dry temperate climate); (c) the effects of government extension and training programs on the adoption and implementation of new technologies; (d) returns to scale and substitution in agricultural production and input usage (e.g., the increases in productivity associated with substituting capital for labor, or the reduction in profits associated with producing commodities that have a relatively small environmental footprint);and (e) the way that commodity prices and/or government policies may have influenced farmer output and/or input choices (e.g., the way fertilizer subsidies may have led to an increase in fertilizer usage).

REFERENCES

- [1] Aigner D., Lovell C., Schmidt P. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 1977; 6: 21–37.
- [2] Coelli T., Rao D. Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000. Agricultural Economics 2005; 32(s1): 115–34.
- [3] Fa[°]re R., Grosskopf S., Norris M., et al. Productivity growth, technical progress, and efficiency change in industrialized countries. The American Economic Review 1994; 84(1): 66–83.
- [4] Farrell M. The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A (General) 1957; 120(3): 253–90.
- [5] Hadley D., Fleming E., Villano R. Is input mix inefficiency neglected in agriculture? a case study of pig-based farming systems in England and Wales. Journal of Agricultural Economics 2013; 64(2): 505–15.
- [6] Holden S., Deininger K., Ghebru H. Impacts of low-cost land certification on investment and productivity. American Journal of Agricultural Economics 2009; 91(2): 359–73.
- [7] Kumbhakar S. A farm-level study of labor use and efficiency wages in Indian agriculture. Journal of Econometrics 1996; 72(1-2): 177-95.
- [9] Meeusen W., van den Broeck J. Efficiency estimation from Cobb-Douglas production functions with composed error. International Economic Review 1977; 18(2): 435–44.
- [10] Mullen J. Productivity growth and the returns from public investment in R&D in Australian broadacre agriculture. The Australian Journal of Agricultural and Resource Economics 2007; 51: 359–84.
- [11] O'Donnell C. Nonparametric estimates of the components of productivity and profitability change in U.S. agriculture. American Journal of Agricultural Economics 2012; 94(4): 873–90.
- [12] O'Donnell C. Using information about technologies, markets and firm behaviour to decompose a proper productivity index. Journal of Econometrics 2016; 190(2): 328–40.
- [13] O'Donnell C. Productivity and Efficiency Analysis: An Economic Approach to Measuring and Explaining Managerial Performance. Springer. Singapore; 2018.
- [14] O'Donnell C., Fallah-Fini S., Triantis K. Measuring and analysing productivity change in a metafrontier framework. Journal of Productivity Analysis 2017; 47(2): 117–28.
- [15] Wikipedia. https://en.wikipedia.org/wiki/Economy of Taiwan#Agriculture.

LIST OF ACRONYMS

APO	Asian Productivity Organization
CCD	Caves-Christensen-Diewert
CRS	Constant returns to scale
DEA	Data envelopment analysis
DRS	Decreasing returns to scale
El	Environment index
EKS	Elteto-Koves-Szulc
ETI	Environment and technology index
FAO	Food and Agriculture Organization
GDP	Gross domestic product
GY	Geometric Young
НМ	Hicks-Moorsteen
ILO	International Labour Organization
IRS	Increasing returns to scale
ISIC	International Standard Industrial Classification
LP	Linear program
ODF	Output distance function
OETSMEI	Output-oriented environment, technology, and scale and mix efficiency index
OSME	Output-oriented scale and mix efficiency
OSME OSMEI	Output-oriented scale and mix efficiency Output-oriented scale and mix efficiency index
	· · · · · · · · · · · · · · · · · · ·
OSMEI	Output-oriented scale and mix efficiency index
OSMEI OTE	Output-oriented scale and mix efficiency index Output-oriented technical efficiency
OSMEI OTE OTEI	Output-oriented scale and mix efficiency index Output-oriented technical efficiency Output-oriented technical efficiency index
OSMEI OTE OTEI PDR	Output-oriented scale and mix efficiency index Output-oriented technical efficiency Output-oriented technical efficiency index People's Democratic Republic
OSMEI OTE OTEI PDR PFP	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivity
OSMEI OTE OTEI PDR PFP ROC	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of China
OSMEI OTE OTEI PDR PFP ROC ROK	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of Korea
OSMEI OTE OTEI PDR PFP ROC ROK SFA	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysis
OSMEI OTE OTEI PDR PFP ROC ROK SFA SFM	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiency indexOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier model
OSMEI OTE OTEI PDR PFP ROC ROK SFA SFM SNI	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier modelStatistical noise index
OSMEI OTE OTEI PDR PFP ROC ROK SFA SFA SFM SNI SNI	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier modelStatistical noise indexTotal factor productivity
OSMEI OTE OTEI PDR PFP ROC ROK SFA SFA SFM SNI TFP TI	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier modelStatistical noise indexTotal factor productivityTechnology index
OSMEI OTE OTEI PDR PDR ROC ROK SFA SFM SNI TFP TI TSME	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiency indexOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier modelStatistical noise indexTotal factor productivityTechnology indexTechnical, scale and mix efficiency
OSMEI OTE OTEI PDR PDR ROC ROK SFA SFM SFM STA TI TSMEI TSMEI	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiency indexOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier modelStatistical noise indexTotal factor productivityTechnology indexTechnical, scale and mix efficiency index
OSMEI OTE OTEI PDR PDR PFP ROC ROK SFA SFM SNI TFP TI TSMEI UK	Output-oriented scale and mix efficiency indexOutput-oriented technical efficiencyOutput-oriented technical efficiency indexPeople's Democratic RepublicPartial factor productivityRepublic of ChinaRepublic of KoreaStochastic frontier analysisStochastic frontier modelStatistical noise indexTotal factor productivityTechnical, scale and mix efficiency indexUnited Kingdom

LIST OF TABLES

Table 1.1	Agricultural employment as a percentage of the total labor force, 2014	2
Table 3.1	Countries, climates, and regions	16
Table 3.2	Descriptive statistics for selected variables	18
Table 3.3	DEA efficiency estimates	19
Table 3.4	ML parameter estimates	20
Table 3.5	SFA efficiency estimates	21
Table 4.1	Average productivity change in Africa (cf. Africa in 1961)	26
Table 4.2	Average productivity change in the Americas (cf. the Americas in 1961)	
Table 4.3	Average productivity change in Asia (cf. Asia in 1961)	30
Table 4.4	Average productivity change in Europe (cf. Europe in 1961)	
Table 5.1	Productivity change in Australia (cf. Australia in 1961)	
Table 5.2	Productivity change in Bangladesh (cf. Bangladesh in 1961)	40
Table 5.3	Productivity change in Cambodia (cf. Cambodia in 1961)	43
Table 5.4	Productivity change in PR China (cf. PR China in 1961)	46
Table 5.5	Productivity change in ROC (cf. ROC in 1961)	
Table 5.6	Productivity change in France (cf. France in 1961)	
Table 5.7	Productivity change in Germany (cf. Germany in 1961)	
Table 5.8	Productivity change in India (cf. India in 1961)	58
Table 5.9	Productivity change in Indonesia (cf. Indonesia in 1961)	
	Productivity change in IR Iran (cf. IR Iran in 1961)	
	Productivity change in Japan (cf. Japan in 1961)	
Table 5.12	Productivity change in ROK (cf. ROK in 1961)	70
	Productivity change in Lao PDR (cf. Lao PDR in 1961)	
Table 5.14	Productivity change in Malaysia (cf. Malaysia in 1961)	76
Table 5.15	Productivity change in Mongolia (cf. Mongolia in 1961)	79
Table 5.16	Productivity change in Nepal (cf. Nepal in 1961)	82
Table 5.17	Productivity change in Pakistan (cf. Pakistan in 1961)	85
	Productivity change in Philippines (cf. Philippines in 1961)	
Table 5.19	Productivity change in Sri Lanka (cf. Sri Lanka in 1961)	91
Table 5.20	Productivity change in Thailand (cf. Thailand in 1961)	94
	Productivity change in UK (cf. UK in 1961)	
	Productivity change in USA (cf. USA in 1961)	
	Productivity change in Vietnam (cf. Vietnam in 1961)	
Table 5.24	Productivity in selected countries in 2015 (cf. Australia in 1961)	106

LIST OF FIGURES

Figure 1.1	Agricultural employment as a percentage of total labor force, 2000–14	2
Figure 1.2	Agricultural GDP as a percentage of total GDP, 1970–2014	3
Figure 3.1	Components of TFP change in Vietnam (cf. Australia in 1961)	
Figure 3.2	Components of TFP change in Mongolia (cf. Australia in 1961)	
Figure 4.1	Average productivity change in Africa (cf. Africa in 1961)	
Figure 4.2	Average productivity change in the Americas (cf. the Americas in 1961)	
Figure 4.3	Average productivity change in Asia (cf. Asia in 1961)	
Figure 4.4	Average productivity change in Europe (cf. Europe in 1961)	32
Figure 5.1	Productivity change in Australia	36
Figure 5.2	Productivity change in Bangladesh	39
Figure 5.3	Productivity change in Cambodia	42
Figure 5.4	Productivity change in PR China	45
Figure 5.5	Productivity change in ROC	48
Figure 5.6	Productivity change in France	51
Figure 5.7	Productivity change in Germany	54
Figure 5.8	Productivity change in India	57
Figure 5.9	Productivity change in Indonesia	60
Figure 5.10	Productivity change in IR Iran	63
Figure 5.11	Productivity change in Japan	66
Figure 5.12	Productivity change in ROK	69
Figure 5.13	Productivity change in Lao PDR	72
Figure 5.14	Productivity change in Malaysia	75
Figure 5.15	Productivity change in Mongolia	78
Figure 5.16	Productivity change in Nepal	81
Figure 5.17	Productivity change in Pakistan	84
Figure 5.18	Productivity change in Philippines	87
Figure 5.19	Productivity change in Sri Lanka	90
Figure 5.20	Productivity change in Thailand	93
Figure 5.21	Productivity change in UK	
Figure 5.22	Productivity change in USA	99
	Productivity change in Vietnam	
Figure 5.24	Productivity in selected countries in 2015 (cf. Australia in 1961)	105

SUSTAINABLE PRODUCTIVITY THE NEW FRONTIER FOR PRODUCTIVITY

Bangladesh

Cambodia

Republic of China

Fiji

Hong Kong

India___

Ind<u>onesia</u>

Islamic Republic of Iran

Japan

Republic of Korea

Lao PDR

Malaysia

Mongolia

Nepal

Pakistan

Philippines

Singapore

Sri Lanka

Thailand

Vietnam

ISBN: 978-92-833-2488-1 (paperback) ISBN: 978-92-833-2489-8 (PDF format)