Smart Grid for Smart Cities

"The Maui Smart Grid – A Smart Energy Technologies Showcase"

Leon R. Roose, Esq.

Principal & Chief Technologist

Grid System Technologies Advanced Research Team

Hawaii Natural Energy Institute School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822

APO 3rd World Conference on Green Productivity

Taipei, Taiwan, Republic of China November 4, 2014

Hawaii is Paradise Found

But, Hawaii's Isolation Poses a Serious Challenge

Nearly 90% of Hawaii's total energy is met using <u>fossil fuels</u>

100% of the crude oil for the State is *imported*

Threat to Hawaii's:

- Security
- Environment
- Economy

US Dept of State Geographer © 2013 Google Image © 2013 TerraMetrics Data SIO, NOAA, U.S. Navy, NGA, GEBCO

3

High Energy Cost Drains the Island Economy

High Cost of Service

Hawaii ranks #1 in U.S. electric energy costs:

46.4 cents/kWhMolokai46.3 cents/kWhLanai42.2 cents/kWhHawaii37.8 cents/kWhMaui34.6 cents/kWhOahu(Avg. residential rates for **2013**)

11 - 12 cents/kWh U.S. avg. Source: Hawaiian Electric Company

Fuel costs make up more than 70 percent of the typical bill

High Electricity Price and Volatility Linked to Cost of Oil

Renewable Energy Aimed to "Break the Link" and Lower Cost

<u>Opportunity</u> for Sustainability in Hawaii is Abundant

Progressive Leadership in Clean Energy <u>Policy</u>

Hawaii Clean Energy Initiative (HCEI)

The State of Hawaii, US DOE, and local utility launched HCEI in January 2008 to transform Hawaii to a 70% clean energy economy by 2030:

- Increasing Hawaii's economic and energy security
- Fostering and demonstrating Hawaii's innovation
- Developing Hawaii's workforce of the future
- Becoming a clean energy model for the U.S. and the world

Strong Hawaii Policies <u>Highest</u> RPS Target in the United States

40% by 2030 (2015 - 15%; 2020 - 25%) Other key policies:

- Net metering
- Feed in tariffs
- Tax incentives

Exceeding Hawaii RPS Goals

Renewable Generation for Hawaiian Electric Companies – Current Generation Achieved and Generation Required

Hawaii's Renewable Energy Projects

"Clean Energy, Lower Bills"

Source: Hawaiian Electric Companies 2013 Clean Energy Update Report

On Oahu, 250 MW of large-scale PV projects in PPA negotiation

Rapid Growth in Customer Sited Solar PV in Hawaii

- Rooftop PV in Hawaii has grown 15 fold in less than 5 years
- PV generation can exceed customer demand in many areas of the island

Cumulative Installed PV -- As of June 30, 2014

	Number of PV Systems			PV Capacity, MW		
	Number	% Residential	% Commercial	Capacity	% Residential	% Commercial
Hawaiian Electric	33,861	97%	3%	254	67%	33%
Hawai'i Electric Light	6,231	93%	7%	44.0	61%	39%
Maui Electric	6,187	92%	8%	47.5	61%	39%
Total	46,279)		346	$\mathbf{)}$	

Data subject to change

Renewable Portfolio Standards (RPS) Projections

Hawaiian Electric Companies Power Supply Interconnection Plan (PSIP) (Filed: August 26, 2014)

10

Wind and Solar Resource Intermittency and Variability

MECO Frequency & KWP MW Output - Feb. 29, 2008

15

n

MĀNOA

N.M

Wind Energy

Maui Island Leading the way in Wind and Solar Power

Maui Island Test Bed

A Model of Smart Grid Innovation & Collaboration

- Maui Smart Grid Project (2009) ~\$12 M
 - US DOE funded, <u>HNEI led</u> project to integrate smart grid technology to achieve reduced peak load on a distribution circuit and better management of intermittent renewable energy
- Maui Advanced Solar Initiative (2012) ~\$11 M
 - US DOE & ONR funded, <u>HNEI led</u> project to develop and demonstrate advanced PV inverter functionality in a smart grid environment
- JUMPSmart Maui (2011) ~\$30 M
 - NEDO funded, <u>*Hitachi led*</u> project to integrate high levels of PV, wind energy, and EV into an island wide smart grid environment
- Great Maui Project (2013) ~\$20 M
 - NEDO funded, <u>*Hitachi led*</u> phase 2 of JUMP Smart Maui project, to demonstrate EV vehicle-grid and Virtual Power Plant integration

All projects have partners in common and share hardware, results, and lessons learned

- Implement advanced communications and control technologies to improve grid performance
- Demonstrate new "smart grid" technologies to:
 - Reduce peak demand by 15%
 - Better integrate wind and solar power
 - Improve grid reliability
 - Inform consumer demand decisions

http://www.mauismartgrid.com/maui-smart-grid-project-description/project-team

Maui

14

Project will Manage Distributed Energy Resources (DER) to Support Grid Operations

OBJECTIVES

- Deploy new Smart Grid Inverters
- Utilize Inverter Management Control Software (IMCS)
- Utilize <u>standards-based</u> controls and communications
- Employ <u>detailed</u> distribution modeling and <u>high-resolution</u> field data to develop advanced inverter settings

Research Project lead

- Project oversight, management and direction
- Smart Inverter application design; performance and data analytics

Communications Technology Lead

- Mesh Communication System; IMCS
- Customer Engagement via PV Customer Portal

Inverter technology leads

- Leads for communications integration into inverter
- Develop control functionality in inverter; implement control programs sent from IMCS

Host utility in Hawaii

• Inverter operations for field pilot; performance evaluation

Co-Services lead

• Sales, marketing, installation, project management, customer service

Host utility in Washington DC

• Inverter operations for field pilot; performance evaluation

Co-Services lead

• Sales, marketing, installation, project management, customer service

Inverter Testing Facility

• Site of functional requirements and inverter testing

Grid System Technologies Advanced Research Te

wai'i Natural Energy Institute

Silver Spring

RISING SUNSOLAR+ELECTRIC

NGH

SOLUTION ARCHITECTURE

Utility Back Office Systems

Inverter Management & Control Software

UNIVERSITY of HAWAI'I

Smart Grid Network

Silver Spring Networks

Network Interface Cards

INVERTER TESTING, DETAILED DISTRIBUTION MODELING, & FIELD PERFORMANCE ANALYTICS

Smart Meter

Utility owned

Home

JUMPSmart Maui Project

A Japan – United States Smart Grid Demonstration Project

NEDO

JUMPSmart Maui Project

In Maui, large scale renewable energy (72 MW of wind and 72 MW of distributed PV) has been introduced. In addition, many electric vehicles (EV) are expected soon.

Issues

 Excess Energy
System Frequency Impact
Distribution Line Voltage Impact
Solutions
Integrated DMS
µDMS &Smart PCS
EV charger control
Battery system
Direct Load Control
ICT Platform

Basic Policy for Demonstration

UNIVERSITY of HAWAI'I

MANOA

Maximize Utilization of Renewable Energy (RE)

Stable Supply of Electric Power

Solution for Impact of EV & PV High Penetration

HITACHI

Inspire the Next

Overall View of System Configuration

EV Fast Charging Stations on Maui

UNIVERSITY of HAWAI'I'

©Hitachi, Ltd., 2013. All rights reserved.

Great Maui Project

Development of VPP solutions in Maui

Integrate Renewables and Transform the Maui Grid

Partnering for a Clean Energy Future

- International collaborations, such as the successful Japan-US partnership in smart grid technology development on Maui island, serve as a crucial catalyst to drive smart energy technology innovation
- Hawaii is an ideal 'test bed' to prove concepts and learn lessons about smart energy technologies in action that will achieve ...
 - $\sqrt{\mathbf{A}}$ clean natural environment
 - $\sqrt{}$ Energy independence and security
 - $\sqrt{}$ Affordable and stable energy costs
 - $\sqrt{1}$ Increased societal productivity

All Keys to Delivering a Sustainable Energy Future

Mahalo! (Thank you)

For more information, contact:

Grid System Technologies Advanced Research Team

Leon R. Roose, Esq. Principal & Chief Technologist Grid **START**

Hawaii Natural Energy Institute School of Ocean & Earth Science & Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, Hawaii 96822

Office: (808) 956-2331 Mobile: (808) 554-9891 E-mail: <u>lroose@hawaii.edu</u> Website: www.hnei.hawaii.edu

